

Web Service API
Integration Guide

Version 2020-4 (IPG)

Integration Guide Web Service API

Version 2020-4 (IPG)

Contents
1 Introduction 6
2 Artefacts You Need 7
3 How the API works 8
4 Sending transactions to the gateway 9
5 Building Transactions in XML] 10

5.1 Credit/Debit Card transactions 10
 Sale 11
 Pre-Authorisation 12
 Post-Authorisation 12
 ForceTicket 13
 Return 13
 Credit 14
 Void 14
 Recurring Sale (Merchant-triggered) 15

5.2 MasterPass™ 16
5.3 PayPal 16

 Post-Authorisation Payment Transaction 16
 Recurring Payment Transaction 17
 Return 17
 Void 17
 Credit 18

5.4 Generic Transaction Type for Voids and Returns 18
6 Additional Web Service actions 20

6.1 Initiate Clearing 20
6.2 Inquiry Order 20
6.3 Inquiry Transaction 21
6.4 Recurring Payments (Scheduler) 22

 Install 22
 Modify 23
 Cancel 23
 Test Recurring Payments in test environment 24
 Response 24

6.5 External transaction status 24
 Trigger email notifications 24
 Card Information Inquiry 25

6.6 Basket Information and Product Catalogue 25
 Basket information in transaction messages 25
 Setting up a Product Catalogue 26
 Manage Product Stock 27
 Sale transactions using product stock 28

7 Data Vault 28
7.1 Token Type Options 29
7.2 Store or update payment information when performing a transaction 31
7.3 Store payment information from an approved transaction 32
7.4 Initiate payment transactions using stored data 32
7.5 Store payment information without performing a transaction at the same time 33
7.6 Avoid duplicate cardholder data for multiple records 35
7.7 Display stored records 35
7.8 Delete existing records 36

8 Dynamic Currency Conversion (Global Choice™) and Dynamic Pricing 36

8.1 Exchange rate requests for Global Choice™ 37
8.2 Exchange rate requests for Dynamic Pricing 37
8.3 Exchange rate responses 38
8.4 Conversion offering 39
8.5 Declined rate request 39
8.6 Failed rate request 40
8.7 Global Choice™ transactions 40

 Step 1: Rate request 40
 Step 2: Using the conversion rate for the payment transaction 41

9 Payment URL 43
9.1 Payment URL creation 43
9.2 Payment URL deletion 44
9.3 Payment URL custom text 45

10 3-D Secure Authentication 46
10.1 3-D Secure authentication (3DS 1.0) 46
10.2 EMV 3-D Secure authentication (3DS 2.0) 49

11 Purchasing cards 49
12 XML-Tag overview 53

12.1 Overview by transaction type 53
12.2 Description of the XML-Tags 60

 CreditCardTxType 60
 CreditCardData 60
 recurringType 61
 UnscheduledCredentialOnFileType 61
 Wallet 62
 cardFunction 62
 CreditCard3DSecure 62
 3DSecure Authentication / Verification Redirect Response 63
 3DSecure Authentication / ACS Response 63

 PayPalTxType 63
 Payment 64
 TransactionDetails 64
 Purchasing Cards 66
 Purchasing Cards / Line Item Data 66
 InquiryRateReference 67
 Billing 67
 Shipping 68
 ClientLocale 68
 RequestCardRateForDCC 69
 RequestMerchantRateForDynamicPricing 69
 CardRateForDCC and MerchantRateForDynamicPricing 69
 MCC 6012 Visa and Mastercard Mandate 70
 Market Segment Addendum 70
 SCA Exemptions 70

13 Custom Parameters 71
14 Building a SOAP Request Message 71
15 Reading the SOAP Response Message 72

15.1 SOAP Response Message 72
15.2 SOAP Fault Message 73
15.3 SOAP-ENV:Server 73
15.4 SOAP-ENV:Client 74

 MerchantException 74
 ProcessingException 75

16 Analysing the Transaction Result 76
16.1 Transaction Approval 76

16.2 Transaction Failure 78
17 Building an HTTPS POST Request 79

17.1 PHP 80
 Using the cURL PHP Extension 80
 Using the cURL Command Line Tool 81

17.2 ASP 81
18 Establishing a TLS connection 82

18.1 PHP 82
 Using the PHP cURL Extension 83
 Using the cURL Command Line Tool 83

18.2 ASP 83
19 Sending the HTTPS POST Request and Receiving the Response 85

19.1 PHP 85
 Using the PHP cURL Extension 85
 Using the cURL Command Line Tool 85

19.2 ASP 86
20 Using a Java Client to connect to the web service 87

20.1 Instance an IPGApiClient 87
20.2 How to construct a transaction and handle the response 87
20.3 How to construct an action 88
20.4 How to connect behind a proxy 88

21 Appendix 88
XML 88
XML Schemas 89
Troubleshooting - Merchant Exceptions 89
Troubleshooting - Processing Exceptions 93
Troubleshooting - Login error messages when using cURL 96
Troubleshooting - Login error messages when using the Java Client 97
Troubleshooting - .NET integration issues 98

Getting Support

There are different manuals available for First Data’s eCommerce solutions. This Integration Guide will
be the most helpful for integrating the Web Service API for usage with our distribution channels in
Europe, Asia, Australia, Latin America and Africa.

For information about settings, customisation, reports and how to process transactions manually (by
keying in the information) please refer to the User Guide Virtual Terminal.

If you have read the documentation and cannot find the answer to your question, please contact your
local support team.

Information for merchants with existing Web Service API integration using the Java client to connect to
the web service:

• The implementation of the IPGApiClient and some signatures of methods of this class have been
changed due to a change from appache http client 3.x to appache http client 4.x

• Transaction classes and transaction factory have not been changed

• If the previous IPGApiClient works in your environment, you can continue to use it.

1 Introduction

The Web Service API is an Application Programming Interface which allows you to connect your
application with the First Data Gateway. In this way, your application is able to submit payment
transactions without any user interference.

Please note that if you store or process cardholder data within your own application, you must ensure
that your system components are compliant with the Data Security Standard of the Payment Card
Industry (PCI DSS). Depending on your transaction volume, an assessment by a Qualified Security
Assessor may be mandatory to declare your compliance status.

From a technical point of view, this API is a Web Service offering one remote operation for performing
transactions. The three core advantages of this design can be summarized as follows:

• Platform independence: Communicating with the Web Service API means that your
application must only be capable of sending and receiving SOAP messages. There are no
requirements tied to a specific platform, since the Web Service technology builds on a set of
open standards. In short, you are free to choose any technology you want (e.g. J2EE, .NET,
PHP, ASP, etc.) for making your application capable of communicating with the Web Service
API.

• Easy integration: Communicating with a Web Service is simple – your application has to build
a SOAP request message encoding your transaction, send it via HTTPS to the Web Service
and wait for a SOAP response message which contains your transaction’s status report. Since
SOAP and HTTP are designed to be lightweight protocols, building requests and responses
becomes a straightforward task. Furthermore, you rarely have to do this manually, since there
are plenty of libraries available in almost every technology. In general, building a SOAP request
and handling the response is reduced to a few lines of code.

• Security: All communication between your application and the Web Service API is TLS-
encrypted. This is established by your application holding a client certificate which identifies it
uniquely at the Web Service. In the same way, the First Data Gateway holds a server certificate
which your application may check for making sure that it speaks to our Web Service API. Finally,
your application has to do a basic authentication (user name / password) before being allowed
to communicate with the Web Service. In this way, the users who are authorised to communicate
with the First Data Gateway are identified. These two security mechanisms guarantee that the
transaction data sent to First Data both stays private and is identified as transaction data that
your application has committed and belongs to no one else.

While this represents just a short summary of the Web Service API’s features, the focus of this guide
lies on integrating the First Data Gateway functionality into your application. A detailed description,
explaining how this is done step by step, is presented in this guide.

2 Artefacts You Need

Supporting a high degree of security requires several artefacts you need for communicating securely
with the Web Service API. Since these artefacts are referenced throughout the remainder of this guide,
the following checklist shall provide an overview enabling you to make sure that you have received the
whole set when registering your application for the First Data Gateway:

o Store ID: Your store ID (e.g. 10012345678) which is required for the basic
authentication.

o User ID: The user ID denoting the user who is allowed to access the Web Service API,
e.g. 1. Again, this is required for the basic authentication.

o Password: The password required for the basic authentication.

o Client Certificate p12 File: The client certificate and private key stored in a p12 file
having the naming scheme WSstoreID._.userID.p12, e.g. in case of the above store ID
/ user ID examples, this would be WS101._.007.p12. This file is used for authenticating
the client at the Gateway. For connecting with Java you need a ks-File, e.g.:
WS10012345678._.1.ks.

o Client Certificate Installation Password: The password which is required to access the
p12 file (containing the client certificate and private key file).

o Client Certificate Private Key: The private key of the client certificate stored in a key file
having the naming scheme WSstoreID._.userID.key, e.g. in case of the above store ID
/ user ID examples, this would be WS10012345678._.1.key. Some tools which support
you in setting up your application for using the Web Service API require the private key
in this format when doing the client authentication at the Gateway.

o Client Certificate Private Key Password: This password protects the private key of the
client certificate. This password is needed to access the private key file (“Client
Certificate Private Key”) It follows the naming scheme ckp_creationTimestamp. For
instance, this might be ckp_1193927132.

o Client Certificate PEM File: The list of client certificates stored in a PEM file having the
naming scheme WSstoreID._.userID.pem, e.g. in case of the above store ID / user ID
examples, this would be WS10012345678._.1.pem. Some tools which support you in
setting up your application for using the Gateway require this file instead of the p12 file
described above.

o Trust Anchor as concatenated PEM File (tlstrust.pem): The file contains a list of client
certificates you should trust to establish a trusted connection to the running the Web
Service API. A Concatenated list of PEM-formatted certificates allow easy installation
for Apache Webservers or PHP.Trust Anchor as Java Keystore File (truststore.jsk): The
file contains a list of client certificates you should trust to establish a trusted connection
to the server running the Web Service API. This format is can easily support Java-based
integrations

o Trust Anchor as PKCS#7 File (tlstrust.p7b): This file contains a list of CA certificates
you should trust to establish a trusted connection to the server running the Web Service
API. PKCS#7 Files allow the easy installation of multiple certificate for example within
Microsoft Windows.

If you should be planning to handle multiple Store IDs through your integration, we can issue a special
API User and Client Certificate for you that you can use across all your Stores. When you submit
transactions from that API user, you do not need to vary the API User Name as the API User is the
same for all your Stores. You will need to include the Store ID in each transaction request in that case.

3 How the API works

The following section describes the API by means of a credit card transaction. The process for other
payment types is similar.

In most cases, a customer starts the overall communication process by buying goods or services with
her credit card in your online store. Following this, your store sends a credit card transaction (mostly
in order to capture the customer’s funds) via the Web Service API. Having received the transaction, the
First Data Gateway forwards it to the credit card processor for authorisation. Based on the result, an
approval or error is returned to your online store. This means that all communication and processing
details are covered by the First Data Gateway and you only have to know how to communicate with this
Web Service.

The Web Service Standard defines such an interface by using the Web Service Definition Language
(WSDL). A WSDL file defining the Web Service API for the First Data Gateway can be found at:

https://test.ipg-online.com/ipgapi/services/order.wsdl

Note that you will have to supply your client certificate and your credentials, when viewing or requesting
the file e.g. in a Web browser. For instance, in case you want to view the WSDL file in Microsoft’s Internet
Explorer running on Microsoft Windows XP, you first have to install your client certificate, and then call
the above URL. This is done by executing the following steps:

1. Open the folder in which you have saved your client certificate p12 file.
2. Double-click the client certificate p12 file.
3. Click Next. Check the file name (which should be already set to the path of your client certificate

p12 file) and click Next.
4. Provide the Client Certificate Installation Password and click Next.
5. Choose the option Automatically select the certificate store based on the type of certificate and

click Next. This will place the certificate in your personal certificate store (more precisely in the
local Windows user’s personal certificate store).

6. Check the displayed settings and click Finish. Your client certificate is now installed.
7. Now, open a Microsoft Internet Explorer window and provide the above URL in the address

field.
8. After requesting the URL, the server will ask your browser to supply the client certificate to

making sure that it is talking to your application correctly. Since you have installed the certificate
in the previous steps, it is transferred to the server without prompting you for any input (i.e. you
will not notice this process). Then, the First Data Gateway sends its server certificate
(identifying it uniquely) to you. This certificate is verified against pre-installed certificates of your
browser. Again, this is done automatically without prompting you for any input. Now, a secure
connection is established and all data transferred between your application and the Web
Service API is TLS-encrypted. Please note, that only TLS secured communication over
standard HTTPS TCP port 443 is accepted.

9. Next, you will be prompted to supply your credentials for authorisation. As user name you have
to provide your store ID and user ID encoded in the format WSstoreID._.userID (unless you
manage multiple Stores through your integration). For instance, assuming your store ID is 101,
your user ID 007, and your password myPW, you have to supply WS101._.007 in the user
name field and myPW in the password field. Note that your credentials are encrypted before
being passed to the server due to the TLS connection established in the steps above. Then,
click OK.

10. The Web Service API WSDL file is displayed.

In short, the WSDL file defines the operations offered by the Web Service, their input and return
parameters, and how these operations can be invoked. In case of the First Data Gateway Web Service
API, it defines only one operation (IPGApiOrder) callable by sending a SOAP HTTP request to the
following URL:

https://test.ipg-online.com/ipgapi/services

This operation takes an XML-encoded transaction as input and returns an XML-encoded response. Note
that it is not necessary to understand how the WSDL file is composed for using the First Data Gateway.
The following chapters will guide you in setting up your store for building and performing custom credit
card transactions.

However, in case you are using third-party tools supporting you in setting up your store for accessing
the Web Service API, you might have to supply the URL where the WSDL file can be found. In a similar
way as described above, you have to tell your Web Service tool, that the communication is TLS-enabled,
requiring you to provide your client certificate and accept the server certificate as a trusted one.
Furthermore, you have to supply your credentials. How all is done heavily depends on your Web Service
tool. Hence, check the tool’s documentation for details.

4 Sending transactions to the gateway

The purpose of this chapter is to give you a basic understanding of the steps to be taken when
committing transactions to the First Data Gateway. It describes what happens if a customer pays with
her credit card in an online store using the Web Service API for committing transactions.

• The customer clicks on the Pay button in the online store.

• The online store displays a form asking the customer to provide her credit card number and the
expiry month and year.

• The customer types in these three fields and submits the data to the online store (i. e. purchases
the goods).

• The online store receives the data and builds an XML document encoding a Sale transaction
which includes the data provided by the customer and the total amount to be paid by the
customer.

• After building the XML Sale transaction, the online store wraps it in a SOAP message which
describes the Web Service operation to be called with the transaction XML being passed as a
parameter.

• Having built the SOAP message, the online store prepares it for being transferred over the
Internet by packing its content into an HTTPS POST request. Furthermore, the store sets the
HTTP headers, especially its credentials (note that the credentials are the same as the ones
you have to provide for viewing the WSDL file).

• Now, the store establishes an TLS connection by providing the client and server certificate.
Please note, that only TLS secured communication over standard HTTPS TCP port 443 is
accepted.

• Then, the online store sends the HTTPS request to the Web Service API and waits for an HTTP
response.

• The Web Service API receives the HTTPS request and parses out the authorization information
provided by the store in the HTTP headers.

• Having authorized the store to use the First Data Gateway, the SOAP message contained in
the HTTP request body is parsed out. This triggers the Web Service operation handling the
transaction processing to run.

• The Gateway then performs the transaction processing, builds an XML response document,
wraps it in a SOAP message, and sends this SOAP message back to the client in the body of
an HTTPS response.

• Receiving this HTTPS response wakes up the store which reads out the SOAP message and
response XML document being part of it.

• Depending on the data contained in the XML response document an approval page is sent back
to the customer in case of a successful transaction, otherwise an error page is returned.

• The approval or error page is displayed.

While this example describes the case of a Sale transaction, other transactions basically follow the same
process.

Summarising the scenario, your application has to perform the following steps in order to commit credit
card transactions and analyze the result:

• Build an XML document encoding your transactions

• Wrap that XML document in a SOAP request message

• Build an HTTPS POST request with the information identifying your store provided in the HTTP
header and the SOAP request message in the body

• Establish an TLS connection between your application and the Web Service API

• Send the HTTPS POST request to the First Data Gateway and receive the response

• Read the SOAP response message out of the HTTPS response body

• Analyse the XML response document contained in the SOAP response message

These seven steps are described in the following chapters. They guide you through the process of
setting up your application for performing custom credit card transactions.

5 Building Transactions in XML]

This chapter describes how the different transaction types can be built in XML. As the above example
scenario has outlined, a transaction is first encoded in an XML document which is then wrapped as
payload in a SOAP message. That means the XML-encoded transaction represents the parameter
passed to the Web Service API operation.

Note that there exists a variety of Web Service tools supporting you in the generation of client stubs
which might free you of the necessity to deal with raw XML. However, a basic understanding of the XML
format is crucial in order to build correct transactions regardless of the available tool support. Hence, it
is recommended to become familiar with the XML format used by the Web Service API for encoding
transactions.

5.1 Credit/Debit Card transactions

Regardless of the transaction type, the basic XML document structure of a credit/debit card transaction
is as follows:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>...</v1:CreditCardTxType>

 <v1:CreditCardData>...</v1:CreditCardData>

 <v1:Payment>...</v1:Payment>

 <v1:TransactionDetails>...</v1:TransactionDetails>

 <v1:Billing>...</v1:Billing>

 <v1:Shipping>...</v1:Shipping>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

The element CreditCardDataTXType is mandatory for all credit card transactions. The other elements
depend on the transaction type. The transaction content is type-specific. The elements in XML
structure must be kept in the same order as shown in examples, otherwise the OrderRequest will fail.

For XML-tags related to Card Present transactions with a chip reader and PIN entry device please refer
to the xsd’s in the Appendix of this document.

 Sale

The following XML document represents an example of a Sale transaction using the minimum set of
elements:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111********1111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>07</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>19.95</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

See chapter XML-Tag overview for a detailed description of all elements used in the above example
as well as further optional elements.

The following XML document represents an example of a Sale transaction for API users handling
multiple Store IDs:

<ipgapi:IPGApiOrderRequest

xmlns:ipgapi='http://ipg-online.com/ipgapi/schemas/ipgapi'

xmlns:v1='http://ipg-online.com/ipgapi/schemas/v1'>

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:StoreId>1234567890</v1:StoreId>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111******1111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>20</v1:ExpYear>

 <v1:CardCodeValue>XXX</v1:CardCodeValue>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>15.00</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1:OrderId>12-34-56</v1:OrderId>

 <v1:MerchantTransactionId>AB500500</v1:MerchantTransactionId>

 <v1:TransactionOrigin>ECI</v1:TransactionOrigin>

 <v1:DynamicMerchantName>MyWebsite</v1:DynamicMerchantName>

 </v1:TransactionDetails>

 <v1:Billing>

 <v1:Zip>0001</v1:Zip>

 </v1:Billing>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

 Pre-Authorisation

The following XML document represents an example of a PreAuth transaction using the minimum set
of elements:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>preAuth</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111********1111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>07</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>100.00</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

See chapter XML-Tag overview for a detailed description of all elements used in the above example
as well as further optional elements.

 Post-Authorisation

The following XML document represents an example of a PostAuth transaction using the minimum set
of elements:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>postAuth</v1:Type>

 </v1:CreditCardTxType>

 <v1:Payment>

 <v1:ChargeTotal>59.00</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1:OrderId>

 703d2723-99b6-4559-8c6d-797488e8977

 </v1:OrderId>

 </v1:TransactionDetails>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

In case your system is not aware of the payment method that has been used for the original Pre-
Authorisation transaction, the Post-Authorisation can be performed using any TxType which supports
Post-Authorisations. The gateway will then select the correct payment method based on the
referenced Order ID.

See chapter XML-Tag overview for a detailed description of all elements used in the above example
as well as further optional elements.

 ForceTicket

The following XML document represents an example of a ForceTicket transaction using the minimum
set of elements:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>forceTicket</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111********1111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>07</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>59.00</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1:ReferenceNumber>123456</v1:ReferenceNumber>

 </v1:TransactionDetails>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

See chapter XML-Tag overview for a detailed description of all elements used in the above example
as well as further optional elements.

 Return

The following XML document represents an example of a Return transaction using the minimum set of
elements:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>return</v1:Type>

 </v1:CreditCardTxType>

 <v1:Payment>

 <v1:ChargeTotal>19.00</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1:OrderId>

 62e3b5df-2911-4e89-8356-1e49302b1807

 </v1:OrderId>

 </v1:TransactionDetails>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

In case your system is not aware of the payment method that has been used for the original
transaction, the Return can be performed using any TxType which supports Returns. The gateway will
then select the correct payment method based on the referenced Order ID.

See chapter XML-Tag overview for a detailed description of all elements used in the above example
as well as further optional elements.

 Credit

Please note that Credit is a transaction type that requires special user permissions.

The following XML document represents an example of a Credit transaction using the minimum set of
elements:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>credit</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111********1111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>07</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>50.00</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

See chapter XML-Tag overview for a detailed description of all elements used in the above example
as well as further optional elements.

 Void

The following XML document represents an example of a Void transaction using the minimum set of
elements:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>void</v1:Type>

 </v1:CreditCardTxType>

 <v1:TransactionDetails>

 <v1:IpgTransactionId>1234567890</v1:IpgTransactionId>

 </v1:TransactionDetails>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

For referencing to the transaction that shall be voided, this example uses the parameter
IpgTransactionId. If you have assigned a transaction ID (MerchantTransactionId) in the original
transaction, you can alternatively submit this ID as ReferencedMerchantTransactionId instead..
In case your system is not aware of the payment method that has been used for the original
transaction, the Void can be performed using any TxType which supports Voids. The gateway will then
select the correct payment method based on the referenced Order ID and TDate.

See chapter XML-Tag overview for a detailed description of all elements used in the above example
as well as further optional elements.

 Recurring Sale (Merchant-triggered)

The following XML document represents an example of a first Sale transaction of a series of recurring
payments:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111********1111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>07</v1:ExpYear>

 </v1:CreditCardData>

<ns2:recurringType>FIRST</ns2:recurringType>

 <v1:Payment>

 <v1:ChargeTotal>19.95</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

Subsequent transactions in a series need to be flagged like this:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111********1111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>07</v1:ExpYear>

 </v1:CreditCardData>

<ns2:recurringType>REPEAT</ns2:recurringType>

 <v1:Payment>

 <v1:ChargeTotal>19.95</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

Please see chapter Recurring Payments (Scheduler) for the alternative option to let the gateway
automatically trigger recurring transactions.

5.2 MasterPass™

MasterPass is MasterCard’s digital wallet solution that allows consumers to store payment, billing and
shipping details for a fast, convenient, and secure checkout experience at a merchant's website.

The easiest way to make use of MasterPass is to use our Connect solution. However in case you prefer
to integrate directly to MasterPass and manage the authentication and wallet process yourself, you can
submit the Wallet ID and Wallet Type within your request for a credit card transaction.

Please see details for a direct integration with MasterPass here:
https://developer.mastercard.com/portal/display/api/MasterPass+-+Merchant+Checkout+Services+-
+Documentation

The following XML document represents an example of a Sale transaction with MasterPass using the
minimum set of elements:

<ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111********1111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>07</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Wallet>

 <v1:WalletType>MASTERPASS</ns2:WalletType>

 <v1:WalletID>101</ns2:WalletID>

 </v1:Wallet>

 <v1:Payment>

 <v1:ChargeTotal>19.95</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

5.3 PayPal

 Post-Authorisation Payment Transaction

After a payment authorisation for PayPal has been submitted via the Gateway’s Connect interface, the
Web Service API can be used to perform post-authorisation payments.

The following XML document represents an example of a PostAuth transaction using the minimum set
of elements:
<ns5:IPGApiOrderRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/v1">

 <ns4:Transaction>

 <ns4:PayPalTxType>

 <ns4:Type>postAuth</ns4:Type>

 </ns4:PayPalTxType>

 <ns4:Payment>

 <ns4:ChargeTotal>1</ns4:ChargeTotal>

 <ns4:Currency>EUR</ns4:Currency>

 </ns4:Payment>

https://developer.mastercard.com/portal/display/api/MasterPass+-+Merchant+Checkout+Services+-+Documentation
https://developer.mastercard.com/portal/display/api/MasterPass+-+Merchant+Checkout+Services+-+Documentation
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/a1

 <ns4:TransactionDetails>

 <ns4:OrderId>

C-32121f4d-852f-4f48-8095-8585b917c079

</ns4:OrderId>

 </ns4:TransactionDetails>

 </ns4:Transaction>

</ns5:IPGApiOrderRequest>

See chapter XML-Tag overview for a detailed description of all elements used in the above example
as well as further optional elements.

 Recurring Payment Transaction

The recurring payments for PayPal can be executed via the Connect solution. You have to submit a
SALE transaction request with the corresponding parameters to install the recurring payments. The first
transaction is always conducted immediately along with the request.

The subsequent transactions are executed by the Gateway’s scheduler, via the API Web Service, as
defined during the initial SALE transaction with the instalation.

 Return

The following XML document represents an example of a Return transaction using the minimum set of
elements:

<ns5:IPGApiOrderRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/v1">

 <ns4:Transaction>

 <ns4:PayPalTxType>

 <ns4:Type>return</ns4:Type>

 </ns4:PayPalTxType>

 <ns4:Payment>

 <ns4:ChargeTotal>0.4</ns4:ChargeTotal>

 <ns4:Currency>EUR</ns4:Currency>

 </ns4:Payment>

 <ns4:TransactionDetails>

 <ns4:OrderId>

C-32121f4d-852f-4f48-8095-8585b917c079

</ns4:OrderId>

 </ns4:TransactionDetails>

 </ns4:Transaction>

</ns5:IPGApiOrderRequest>

In case your system is not aware of the payment method that has been used for the original
transaction, the Return can be performed using any TxType which supports Returns. The gateway will
then select the correct payment method based on the referenced Order ID.

 Void

The following XML document represents an example of a Void transaction using the minimum set of
elements:

<ns5:IPGApiOrderRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/v1">

 <ns4:Transaction>

 <ns4:PayPalTxType>

http://ipg-online.com/ipgapi/schemas/ipgapi
tp://ipg-online.com/ipgapi/schemas/a1%22
tp://ipg-online.com/ipgapi/schemas/a1%22
http://ipg-online.com/ipgapi/schemas/ipgapi
tp://ipg-online.com/ipgapi/schemas/a1%22
tp://ipg-online.com/ipgapi/schemas/a1%22

 <ns4:Type>void</ns4:Type>

 </ns4:PayPalTxType>

 <ns4:TransactionDetails>

 <v1:IpgTransactionId>1234567890</v1:IpgTransactionId>

 </ns4:TransactionDetails>

 </ns4:Transaction>

</ns5:IPGApiOrderRequest>

For referencing to the transaction that shall be voided, this example uses the parameter
IpgTransactionId. If you have assigned a transaction ID (MerchantTransactionId) in the original
transaction, you can alternatively submit this ID as ReferencedMerchantTransactionId instead of
sending a TDate.
In case your system is not aware of the payment method that has been used for the original
transaction, the Void can be performed using any TxType which supports Voids. The gateway will then
select the correct payment method based on the referenced Transaction ID.

 Credit

Please note that Credit is a transaction type that requires special user permissions.

The following XML document represents an example of a Credit transaction using the minimum set of
elements:

<ns5:IPGApiOrderRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/v1">

 <ns4:Transaction>

 <ns4:PayPalTxType>

 <ns4:Type>credit</ns4:Type>

 </ns4:PayPalTxType>

 <ns4:Payment>

 <ns4:ChargeTotal>1</ns4:ChargeTotal>

 <ns4:Currency>EUR</ns4:Currency>

 </ns4:Payment>

 <ns4:Billing>

 <ns4:Email>x@y.zz</ns4:Email>

 </ns4:Billing>

 </ns4:Transaction>

</ns5:IPGApiOrderRequest>

Unlike with other payment methods, PayPal transactions contain no payment data like a card number.
Therefore this transaction requires the resgistered email address of the recipient of the payment. This
email address must be submitted in the field ns4:Billing/ns4:Email.

5.4 Generic Transaction Type for Voids and Returns

The Tag SubsequentTransaction allows you to submit Voids and Refunds independently from which
payment method had been used for the original payment transaction.

You can initiate such transactions by referencing to a previous transaction using one of the following
options:

• IPG Transaction ID
• Merchant Transaction ID

The following XML document represents an example of a Void transaction using the minimum set of
elements for IPG Transaction ID:

<ns5:IPGApiOrderRequest

http://ipg-online.com/ipgapi/schemas/ipgapi

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:SubsequentTransaction>

 <ns2:IpgTransactionId>1234567890</ns2:IpgTransactionId>

 <ns2:Options>

 <ns2:StoreId>120995000</ns2:StoreId>

 </ns2:Options>

 <ns2:TransactionType>VOID</ns2:TransactionType>

 </ns2:SubsequentTransaction>

 </ns5:IPGApiOrderRequest>

The following XML document represents an example of a Void transaction using the minimum set of
elements for Merchant Transaction ID:

<ns5:IPGApiOrderRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:SubsequentTransaction>

 <ns2:ReferencedMerchantTransactionId>ITID-

000380</ns2:ReferencedMerchantTransactionId>

 <ns2:Options>

 <ns2:StoreId>44036000750</ns2:StoreId>

 </ns2:Options>

 <ns2:TransactionType>VOID</ns2:TransactionType>

 </ns2:SubsequentTransaction>

 </ns5:IPGApiOrderRequest>

The following XML document represents an example of a Return transaction using the minimum set of
elements for IPG Transaction ID:

<ns5:IPGApiOrderRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:SubsequentTransaction>

 <ns2:IpgTransactionId>123456789</ns2:IpgTransactionId>

 <ns2:Options>

 <ns2:StoreId>120995000</ns2:StoreId>

 </ns2:Options>

 <ns2:TransactionType>RETURN</ns2:TransactionType>

 <ns2:Payment>

 <ns2:ChargeTotal>1.00</ns2:ChargeTotal>

 <ns2:Currency>978</ns2:Currency>

 </ns2:Payment>

 </ns2:SubsequentTransaction>

 </ns5:IPGApiOrderRequest>

The following XML document represents an example of a Return transaction using the minimum set of
elements for Merchant Transaction ID:

<ns5:IPGApiOrderRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:SubsequentTransaction>

 <ns2:ReferencedMerchantTransactionId>ITID-

000380</ns2:ReferencedMerchantTransactionId>

 <ns2:Options>

 <ns2:StoreId>44036000750</ns2:StoreId>

 </ns2:Options>

 <ns2:TransactionType>RETURN</ns2:TransactionType>

 <ns2:Payment>

 <ns2:ChargeTotal>1.00</ns2:ChargeTotal>

 <ns2:Currency>978</ns2:Currency>

 </ns2:Payment>

 </ns2:SubsequentTransaction>

 </ns5:IPGApiOrderRequest>

6 Additional Web Service actions

6.1 Initiate Clearing

Clearing for transactions can be initiated via the Web Service similar to a payment transaction:

<ipgapi:IPGApiActionRequest

 xmlns:a1="http://ipg-online.com/ipgapi/schemas/a1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <a1:Action>

 </a1:InitiateClearing>

 </a1:Action>

</ipgapi:IPGApiActionRequest>

Clearing will will be executed directly. If clearing was not successful for at least one terminal, the
gateway will send “false” in the response.

<ipgapi:IPGApiActionResponse

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:a1="http://ipg-online.com/ipgapi/schemas/a1"

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1">

<ipgapi:successfully>false</ipgapi:successfully>

</ipgapi:IPGApiActionResponse>

6.2 Inquiry Order

The action InquiryOrder allows you to get details about previously processed transactions of a specific
order. You therefore need to submit the corresponding Order ID:

<ns4:IPGApiActionRequest

 xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

 xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

 xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns2:Action>

 <ns2:InquiryOrder>

 <ns2:OrderId>

 b5b7fb49-3310-4212-9103-5da8bd026600

 </ns2:OrderId>

 </ns2:InquiryOrder>

 </ns2:Action>

</ns4:IPGApiActionRequest>

The result contains information about all transactions belonging to the corresponding Order ID:

<?xml version="1.0" encoding="UTF-8"?><ipgapi:IPGApiActionResponse

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi"

http://ipg-online.com/ipgapi/schemas/ipgapi

xmlns:a1="http://ipg-online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

 <ipgapi:successfully>true</ipgapi:successfully>

 <ipgapi:OrderId>b5b7fb49-3310-4212-9103-5da8bd026600</ipgapi:OrderId>

 <v1:Billing/>

 <v1:Shipping/>

 <a1:TransactionValues>

 <v1:CreditCardTxType>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4501*****8992</v1:CardNumber>

 <v1:ExpMonth>11</v1:ExpMonth>

 <v1:ExpYear>17</v1:ExpYear>

 <v1:Brand>VISA</v1:Brand>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>350.05</v1:ChargeTotal>

 <v1:Currency>826</v1:Currency>

 </v1:Payment>

 <v1:TransactionDetails>

 <v1:Comments>AS400</v1:Comments>

 <v1:InvoiceNumber>551294633441</v1:InvoiceNumber>

 <v1:OrderId>b5b7fb49-3310-4212-9103-5da8bd026600</v1:OrderId>

 <v1:Ip>194.127.72.6</v1:Ip>

 <v1:TDate>1450091856</v1:TDate>

 <v1:TransactionOrigin>MOTO</v1:TransactionOrigin>

 </v1:TransactionDetails>

 <ipgapi:IPGApiOrderResponse>

<ipgapi:ApprovalCode>Y:015722:0795783078:PPXM:2062</ipgapi:ApprovalCode>

 <ipgapi:AVSResponse>PPX</ipgapi:AVSResponse>

 <ipgapi:Brand>VISA</ipgapi:Brand>

 <ipgapi:Country>GBR</ipgapi:Country>

 <ipgapi:OrderId> b5b7fb49-3310-4212-9103-

5da8bd026600</ipgapi:OrderId>

 <ipgapi:PaymentType>CREDITCARD</ipgapi:PaymentType>

<ipgapi:ProcessorApprovalCode>015722</ipgapi:ProcessorApprovalCode>

 <ipgapi:ProcessorCCVResponse>M</ipgapi:ProcessorCCVResponse>

 <ipgapi:ReferencedTDate>1450091856</ipgapi:ReferencedTDate>

 <ipgapi:TDate>1450091856</ipgapi:TDate>

 <ipgapi:TDateFormatted>2015.12.14 12:17:36

(CET)</ipgapi:TDateFormatted>

 <ipgapi:TerminalID>80250837</ipgapi:TerminalID>

 </ipgapi:IPGApiOrderResponse>

 <a1:TraceNumber>2062</a1:TraceNumber>

 <a1:TransactionState>CAPTURED</a1:TransactionState>

 <a1:SubmissionComponent>CONNECT</a1:SubmissionComponent>

 </a1:TransactionValues>

</ipgapi:IPGApiActionResponse>

6.3 Inquiry Transaction

The action InquiryTransaction allows you to get details about a previously processed transaction. You
therefore need to either submit the merchantTransactionId if you have assigned one or alternatively
the ipgTransactionId:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ipg="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:a1="http://ipg-online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

 <soapenv:Header/>

 <soapenv:Body>

 <ipg:IPGApiActionRequest>

 <a1:Action>

 <a1:InquiryTransaction>

 <!--Optional:-->

 <a1:StoreId>12072591</a1:StoreId>

 <!--You have a CHOICE of the next 3 items at this level-->

 <a1:OrderId>C-38fd1bcd-1d67-4248-b9d5-

d30376d92163</a1:OrderId>

 <a1:TDate>1453814407</a1:TDate>

 </a1:InquiryTransaction>

 </a1:Action>

 </ipg:IPGApiActionRequest>

 </soapenv:Body>

</soapenv:Envelope>

The response contains the same elements as in the Inquiry Order example above.

6.4 Recurring Payments (Scheduler)

The action RecurringPayment allows you to install, modify or cancel periodic payments in a way that
subsequent transactions will automatically be triggered by the gateway.

For every recurring transaction, the gateway can send a server-to-server transaction notification to a
defined Notification URL. Please contact your local support team to get your URL registered for these
notifications.

 Install

The following example shows how to install a monthly credit card payment with 12 executions
(InstallmentCount) in 2011 starting on 15 January 2011.
Please note that the RecurringStartDate will be interpreted based on the timezone Europe/Berlin.

<ns4:IPGApiActionRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns2:Action>

 <ns2:RecurringPayment>

 <ns2:Function>install</ns2:Function>

 <ns2:RecurringPaymentInformation>

 <ns2:RecurringStartDate>

20110115

</ns2:RecurringStartDate>

 <ns2:InstallmentCount>12</ns2:InstallmentCount>

 <ns2:InstallmentFrequency>

1

</ns2:InstallmentFrequency>

 <ns2:InstallmentPeriod>

month

</ns2:InstallmentPeriod>

 </ns2:RecurringPaymentInformation>

 <ns2:CreditCardData>

 <ns3:CardNumber>4035……4977</ns3:CardNumber>

 <ns3:ExpMonth>12</ns3:ExpMonth>

 <ns3:ExpYear>12</ns3:ExpYear>

 <ns3:CardCodeValue>XXX</ns3:CardCodeValue>

 </ns2:CreditCardData>

 <ns3:Payment>

 <ns3:ChargeTotal>1</ns3:ChargeTotal>

 <ns3:Currency>978</ns3:Currency>

 </ns3:Payment>

 </ns2:RecurringPayment>

 </ns2:Action>

</ns4:IPGApiActionRequest>

If you set the RecurringStartDate to the actual date, the first payment will immediately be initiated. In
this case, the payment data will only be stored for future payments if this first payment was
succesful/approved.
A start date in the past is not allowed.

The default value for TransactionOrigin is ‘ECI’. If you want to change this value, you can submit a
different TransactionOrigin tag in the RecurringPayment tag.

 Modify

Modifications of an existing Recurring Payment can be initiated using the Order ID:

<ns4:IPGApiActionRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns2:Action>

 <ns2:RecurringPayment>

 <ns2:Function>modify</ns2:Function>

 <ns2:OrderId>

e368a525-173f-4f56-9ae2-beb4023a6993

</ns2:OrderId>

 <ns2:RecurringPaymentInformation>

 <ns2:InstallmentCount>999</ns2:InstallmentCount>

 </ns2:RecurringPaymentInformation>

 </ns2:RecurringPayment>

 </ns2:Action>

</ns4:IPGApiActionRequest>

You only need to include the elements that need to be changed. If you change the credit card number,
it is also required to include the expiry date, otherwise you can change the expiry date without specifying
the credit card number. If you want to change the amount, you also need to include the currency.

 Cancel

To cancel a Recurring Payment, you also use the Order ID:

<ns4:IPGApiActionRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns2:Action>

 <ns2:RecurringPayment>

 <ns2:Function>cancel</ns2:Function>

 <ns2:OrderId>

e368a525-173f-4f56-9ae2-beb4023a6993

</ns2:OrderId>

 </ns2:RecurringPayment>

 </ns2:Action>

</ns4:IPGApiActionRequest>

 Test Recurring Payments in test environment

The test system allows you to manually initiate a scheduled payment to test this functionality. This
function will not work in live mode.

<ns4:IPGApiActionRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

 xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns2:Action>

 <ns2:RecurringPayment>

 <ns2:Function>

perform only in test environment

</ns2:Function>

 <ns2:OrderId>

A-eab002b9-5889-4082-9cc9-5bc06b8eaa61

</ns2:OrderId>

 </ns2:RecurringPayment>

 </ns2:Action>

</ns4:IPGApiActionRequest>

 Response

The response for a successful instalment, modification or cancellation contains the value true for the
parameter <ns4:successfully>:

<ns4:IPGApiActionResponse

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns4:successfully>true</ns4:successfully>

 <ns4:OrderId>e368a525-173f-4f56-9ae2-beb4023a6993</ns4:OrderId>

</ns4:IPGApiActionResponse>

6.5 External transaction status

Some payment endpoints do not send the final result of a payment transaction within their response.
In such cases the Gateway returns an approval code that starts with a question mark (?:…).The action
GetExternalTransactionState allows you to request updates on the state of such transactions. You can
use OrderID + TDate, MerchantTransactionId or IpgTransactionId to reference to a transaction.

 Trigger email notifications

The action SendEMailNotification triggers an email notification for a given transaction. The email will
be created with the email template that has been configured for your Store.

See the User Guide Virtual Terminal & Online Portal for more information on transaction notifications
by email.

<ns5:IPGApiActionRequest

xmlns:ns5=http://ipg-online.com/ipgapi/schemas/ipgapi

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns2:Action>

 <ns2:SendEMailNotification>

 <ns2:OrderId>0/8/15</ns2:OrderId>

 <ns2:TDate>1250599046</ns2:TDate>

http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/ipgapi

 </ns2:SendEMailNotification>

 </ns2:Action>

</ns5:IPGApiActionRequest>

If the optional parameter Email is not set, the email address of the customer stored with the transaction
will be used.

 Card Information Inquiry

The function InquiryCardInformation allows you to check the brand and function of a card by
submitting the card number.

Request:

…<a1:InquiryCardInformation>

<ns2:StoreId>123456789</ns2:StoreId>

<ns2:CardNumber>5413…0002</ns2:CardNumber>

</a1:InquiryCardInformation>…

Response:

…<ipgapi:CardInformation>

<ns2:Brand>MASTERCARD</ns2:Brand>

<ns2:CardFunction>credit</ns2:CardFunction>

<ns2:Country>USA</ns2:Country>

<ns2:Corporate>CORPORATE</ns2:Corporate>

</ipgapi:CardInformation>

</ipgapi:IPGApiActionResponse>

6.6 Basket Information and Product Catalogue

 Basket information in transaction messages

The following example shows how you can use the basket parameters to document in the transaction
what has been sold.

<ns5:IPGApiOrderRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:Transaction>

 <ns2:CreditCardTxType>

 <ns2:Type>sale</ns2:Type>

 </ns2:CreditCardTxType>

 <ns2:CreditCardData>

 <ns2:CardNumber>4035..…4977</ns2:CardNumber>

 <ns2:ExpMonth>12</ns2:ExpMonth>

 <ns2:ExpYear>14</ns2:ExpYear>

 </ns2:CreditCardData>

 <ns2:Payment>

 <ns2:ChargeTotal>1</ns2:ChargeTotal>

 <ns2:Currency>EUR</ns2:Currency>

 </ns2:Payment>

 <ns2:TransactionDetails>

 <ns2:OrderId>68d4a595-fd58-4859-83cd-

1ae13962a3ac</ns2:OrderId>

 </ns2:TransactionDetails>

http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/v1
http://ipg-online.com/ipgapi/schemas/a1

 <ns2:Basket>

 <ns2:Item>

 <ns2:ID>product ID xyz</ns2:ID>

 <ns2:Description>description of

abc</ns2:Description>

 <ns2:ChargeTotal>11</ns2:ChargeTotal>

 <ns2:Currency>EUR</ns2:Currency>

 <ns2:Quantity>5</ns2:Quantity>

 <ns2:Option>

 <ns2:Name>colour</ns2:Option>

 <ns2:Choice>blue</ns2:Choice>

 </ns2:Option>

 <ns2:Option>

 <ns2:Name>size</ns2:Option>

 <ns2:Choice>large</ns2:Choice>

 </ns2:Option>

 </ns2:Item>

 </ns2:Basket>

 </ns2:Transaction>

</ns5:IPGApiOrderRequest>

 Setting up a Product Catalogue

You can store basic information about the products you sell in the following way:

<ns5:IPGApiActionRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns3:Action>

 <ns3:ManageProducts>

 <ns3:Function>store</ns3:Function>

 <ns3:Product>

 <ns3:ProductID>product ID xyz</ns3:ProductID>

 <ns2:ChargeTotal>2</ns2:ChargeTotal>

 <ns2:Currency>EUR</ns2:Currency>

 <ns3:OfferStarts>

2014-12-27T13:29:41.000+01:00

</ns3:OfferStarts>

 <ns3:OfferEnds>

2015-09-19T14:29:41.000+02:00

</ns3:OfferEnds>

 <ns2:Option>

 <ns2:Name>colour</ns2:Option>

 <ns2:Choice>blue</ns2:Choice>

 </ns2:Option>

 <ns2:Option>

 <ns2:Name>size</ns2:Option>

 <ns2:Choice>large</ns2:Choice>

 </ns2:Option>

 </ns3:Product>

 </ns3:ManageProducts>

 </ns3:Action>

</ns5:IPGApiActionRequest>

OfferStarts and OfferEnds are optional and can be used to restrict the visibility of the related products
in custom applications but they will not restrict the possibility of a sale. There are further optional fields
Description, OptionName and Name. Please take a look at the a1.xsd in the appendix of this
document.

The function display shows the requested product with every characteristics.

<ns5:IPGApiActionRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns3:Action>

 <ns3:ManageProducts>

 <ns3:Function>display</ns3:Function>

 <ns3:Product>

 <ns3:ProductID>product ID xyz</ns3:ProductID>

 </ns3:Product>

 </ns3:ManageProducts>

 </ns3:Action>

</ns5:IPGApiActionRequest>

The function delete can be used to set the available stock of a product to zero.

<ns5:IPGApiActionRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns3:Action>

 <ns3:ManageProducts>

 <ns3:Function>delete</ns3:Function>

 <ns3:Product>

 <ns3:ProductID>product ID xyz</ns3:ProductID>

 </ns3:Product>

 </ns3:ManageProducts>

 </ns3:Action>

</ns5:IPGApiActionRequest>

 Manage Product Stock

For every product stock function, the product ID and given options need to exist in your Product
Catalogue.

After you have installed a product, you can fill the product stock with the function add.

<ns5:IPGApiActionRequest

xmlns:ns5=http://ipg-online.com/ipgapi/schemas/ipgapi

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns3:Action>

 <ns3:ManageProductStock>

 <ns3:Function>add</ns3:Function>

 <ns3:ProductStock>

 <ns3:ProductID>product ID xyz</ns3:ProductID>

 <ns2:Option>

 <ns2:Name>colour</ns2:Option>

 <ns2:Choice>blue</ns2:Choice>

 </ns2:Option>

 <ns2:Option>

 <ns2:Name>size</ns2:Option>

 <ns2:Choice>large</ns2:Choice>

 </ns2:Option>

 <ns3:Quantity>13</ns3:Quantity>

 </ns3:ProductStock>

 </ns3:ManageProductStock>

 </ns3:Action>

http://ipg-online.com/ipgapi/schemas/ipgapi

</ns5:IPGApiActionRequest>

The function substract works in the same way, but will only change the quantity, if the difference will
not be negative. If you want to set the quantity to zero you can use the function delete described
above.

 Sale transactions using product stock

After you have set up the product stock, you can use it to verify if there are enough items on stock for
a transaction. A succesful transaction will then substract the quantity. If the product stock contains less
than the requested quantity, the transaction will be rejected without any changes to the product stock.

To use this function, add <ns2:ProductStock>check</ns2:ProductStock> to Basket.

<ns5:IPGApiOrderRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:Transaction>

 <ns2:CreditCardTxType>

 <ns2:Type>sale</ns2:Type>

 </ns2:CreditCardTxType>

 <ns2:CreditCardData>

 <ns2:CardNumber>4035....4977</ns2:CardNumber>

 <ns2:ExpMonth>12</ns2:ExpMonth>

 <ns2:ExpYear>14</ns2:ExpYear>

 </ns2:CreditCardData>

 <ns2:Payment>

 <ns2:ChargeTotal>1</ns2:ChargeTotal>

 <ns2:Currency>EUR</ns2:Currency>

 </ns2:Payment>

 <ns2:TransactionDetails>

 <ns2:OrderId>68d4a595-fd58-4859-83cd-

1ae13962a3ac</ns2:OrderId>

 </ns2:TransactionDetails>

 <ns2:Basket>

<ns2:ProductStock>check</ns2:ProductStock>

 <ns2:Item>

 <ns2:ID>product ID xyz</ns2:ID>

 <ns2:Description>description of

abc</ns2:Description>

 <ns2:ChargeTotal>11</ns2:ChargeTotal>

 <ns2:Currency>EUR</ns2:Currency>

 <ns2:Quantity>5</ns2:Quantity>

 <ns2:Option>

 <ns2:Name>colour</ns2:Option>

 <ns2:Choice>blue</ns2:Choice>

 </ns2:Option>

 <ns2:Option>

 <ns2:Name>size</ns2:Option>

 <ns2:Choice>large</ns2:Choice>

 </ns2:Option>

 </ns2:Item>

 </ns2:Basket>

 </ns2:Transaction>

</ns5:IPGApiOrderRequest>

7 Data Vault

With the Data Vault product option you can store sensitive cardholder data in an encrypted

http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/v1
http://ipg-online.com/ipgapi/schemas/a1

database in First Data’s data centre to use it for subsequent transactions without the need to
store this data within your own systems.
If you have ordered this product option, the Web Service API offers you the following functions.

See further possibilities with the Data Vault product in the Integration Guide for the Connect solution.

7.1 Token Type Options

The type of token can be defined with the optional element TokenType, which can have 2 possible
values : “ONETIME” or “MULTIPAY”.

The default value (when no token type gets submitted) is MULTIPAY.

One time token (that are only valid for a specific time span) is an option for merchants, which work with
tokens for every transaction, no matter if the consumer registers or prefers to check out as a “guest”.
The following XML document represents an example of a request with included element
TokenType = MULTIPAY:

<?xml version="1.0" encoding="UTF-8"?>

<ns4:IPGApiOrderRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:Transaction>

 <ns2:CreditCardTxType>

 <ns2:StoreId>330995001</ns2:StoreId>

 <ns2:Type>sale</ns2:Type>

 </ns2:CreditCardTxType>

 <ns2:CreditCardData>

 <ns2:CardNumber>4035*****4977</ns2:CardNumber>

 <ns2:ExpMonth>12</ns2:ExpMonth>

 <ns2:ExpYear>28</ns2:ExpYear>

 <ns2:CardCodeValue>XXX</ns2:CardCodeValue>

 </ns2:CreditCardData>

 <ns2:Payment>

 <ns2:ChargeTotal>27.2</ns2:ChargeTotal>

 <ns2:Currency>INR</ns2:Currency>

 <ns2:TokenType>MULTIPAY</ns2:TokenType>

 </ns2:Payment>

 <ns2:TransactionDetails>

 <ns2:TransactionOrigin>ECI</ns2:TransactionOrigin>

 </ns2:TransactionDetails>

 </ns2:Transaction>

</ns4:IPGApiOrderRequest>

The following XML document represents an example of a request with included element
TokenType = ONETIME:

<?xml version="1.0" encoding="UTF-8"?>

<ns4:IPGApiOrderRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:Transaction>

 <ns2:CreditCardTxType>

 <ns2:StoreId>330995001</ns2:StoreId>

 <ns2:Type>sale</ns2:Type>

http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/v1
http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/v1
http://ipg-online.com/ipgapi/schemas/a1

 </ns2:CreditCardTxType>

 <ns2:CreditCardData>

 <ns2:CardNumber>4035*****4977</ns2:CardNumber>

 <ns2:ExpMonth>12</ns2:ExpMonth>

 <ns2:ExpYear>28</ns2:ExpYear>

 <ns2:CardCodeValue>XXX</ns2:CardCodeValue>

 </ns2:CreditCardData>

 <ns2:Payment>

 <ns2:ChargeTotal>27.2</ns2:ChargeTotal>

 <ns2:Currency>INR</ns2:Currency>

 <ns2:TokenType>ONETIME</ns2:TokenType>

 </ns2:Payment>

 <ns2:TransactionDetails>

 <ns2:TransactionOrigin>ECI</ns2:TransactionOrigin>

 </ns2:TransactionDetails>

 </ns2:Transaction>

</ns4:IPGApiOrderRequest>

For merchants, which do not wish to define the token themselves, but want it to be generated and
returned, the element AssignToken should be set to ‘true’ and no HostedDataId needs to be sent in that
case.

The following XML document represents an example of a request for getting the token generated by
Gateway, with the element AssignToken = true:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Header/>

 <soap:Body>

 <ns5:IPGApiOrderRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:Transaction>

 <ns2:CreditCardTxType>

 <ns2:StoreId>2209905999</ns2:StoreId>

 <ns2:Type>sale</ns2:Type>

 </ns2:CreditCardTxType>

 <ns2:CreditCardData>

 <ns2:CardNumber>4257******0111</ns2:CardNumber>

 <ns2:ExpMonth>12</ns2:ExpMonth>

 <ns2:ExpYear>17</ns2:ExpYear>

 <ns2:CardCodeValue>XXX</ns2:CardCodeValue>

 </ns2:CreditCardData>

 <ns2:Payment>

 <ns2:ChargeTotal>700.00</ns2:ChargeTotal>

 <ns2:Currency>GBP</ns2:Currency>

 <ns2:AssignToken>true</ns2:AssignToken>

 </ns2:Payment>

 <ns2:TransactionDetails>

 <ns2:TransactionOrigin>MOTO</ns2:TransactionOrigin>

 </ns2:TransactionDetails>

 <ns2:Billing>

 <ns2:Address1>Flat 412a 123 London Rd</ns2:Address1>

 <ns2:City>London</ns2:City>

 <ns2:Zip>CH488AQ</ns2:Zip>

 <ns2:Country>GB</ns2:Country>

 </ns2:Billing>

 </ns2:Transaction>

</ns5:IPGApiOrderRequest>

 </soap:Body>

http://schemas.xmlsoap.org/soap/envelope/
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/v1
http://ipg-online.com/ipgapi/schemas/a1

</soap:Envelope>

The following XML document represents an example of a response with the token generated in the
element HostedDataID:

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiOrderResponse

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:a1="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1">

 <ipgapi:ApprovalCode>Y:609287:8383366115:PPXP:006295</ipgapi:Appro

valCode>

 <ipgapi:AVSResponse>PPX</ipgapi:AVSResponse>

 <ipgapi:Brand>VISA</ipgapi:Brand>

 <ipgapi:Country>ESP</ipgapi:Country>

 <ipgapi:CommercialServiceProvider>CARDNET</ipgapi:CommercialServic

eProvider>

 <ipgapi:OrderId>A-0dd18b32-bc19-40ea-8173-

80537093b18f</ipgapi:OrderId>

 <ipgapi:IpgTransactionId>8383366115</ipgapi:IpgTransactionId>

 <ipgapi:PaymentType>CREDITCARD</ipgapi:PaymentType>

 <ipgapi:ProcessorApprovalCode>609287</ipgapi:ProcessorApprovalCode

>

 <ipgapi:ProcessorCCVResponse>P</ipgapi:ProcessorCCVResponse>

 <ipgapi:ProcessorReferenceNumber>702514006295</ipgapi:ProcessorRef

erenceNumber>

 <ipgapi:ProcessorResponseCode>00</ipgapi:ProcessorResponseCode>

 <ipgapi:ProcessorResponseMessage>Function performed error-

free</ipgapi:ProcessorResponseMessage>

 <ipgapi:TDate>1485354544</ipgapi:TDate>

 <ipgapi:TDateFormatted>2017.01.25 15:29:04

(MEZ)</ipgapi:TDateFormatted>

 <ipgapi:TerminalID>IPGCNP00</ipgapi:TerminalID>

 <ipgapi:TransactionResult>APPROVED</ipgapi:TransactionResult>

 <ipgapi:TransactionTime>1485354544</ipgapi:TransactionTime>

 <ipgapi:HostedData>

 <ipgapi:HostedDataID>7F98D913-85CF-4B88-B994-

B59CB0D4AEB2</ipgapi:HostedDataID>

 </ipgapi:HostedData>

 </ipgapi:IPGApiOrderResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

7.2 Store or update payment information when performing a transaction

Additionally send the parameter HostedDataID together with the transaction data as a unique
identification for the payment information in this transaction. Depending on the payment type, credit
card number and expiry date or account number and bank code will be stored under this ID. In cases
where the submitted ‚HostedDataID’ already exists for your store, the stored payment information will
be updated.

<ipgapi:IPGApiOrderRequest

xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

http://schemas.xmlsoap.org/soap/envelope/
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/v1

 <v1:CreditCardTxType>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>4111********1111</v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>07</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:HostedDataID>

HDID customer 1234567

</v1:HostedDataID>

 <v1:ChargeTotal>19.00</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

The record is only being stored if the authorisation of the payment transaction is successful and your
Store has been setup for this service.

If you want to assign multiple IDs to the same payment information (e.g. because your customer has
several contracts or accounts with you where they want to used the same card for payment), you can
include the parameter HostedDataID multiple times with different values.

7.3 Store payment information from an approved transaction

Payment information can also be stored referring to a previously approved transaction

 <ns4:IPGApiActionRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns2:Action>

 <ns2:StoreHostedData>

 <ns2:DataStorageItem>

 <ns2:OrderId>1234567890</ns2:OrderId>

 <ns2:HostedDataID>

4e72021b-d155-4062-872a-30228c0fe023

</ns2:HostedDataID>

 </ns2:DataStorageItem>

 </ns2:StoreHostedData>

 </ns2:Action>

 </ns4:IPGApiActionRequest>

This action stores the payment information of the transaction with the order id 1234567890. The
transaction must be an approved transaction, otherwise this action fails.

7.4 Initiate payment transactions using stored data

If you stored cardholder information using the Data Vault product, you can perform transactions using
the ‚HostedDataID’ without the need to pass the credit card or bank account data again.

Please note that it is not allowed to store the card code (in most cases on the back of the card) so that
for credit card transactions, the cardholder still needs to enter this value. For the checkout process in
your web shop, we recommend that you also store the last four digits of the credit card number on
your side and display it when it comes to payment. In that way the cardholder can see which of his
maybe several cards has been registered in your shop and will be used for this payment transaction.

<ipgapi:IPGApiOrderRequest

http://ipg-online.com/ipgapi/schemas/ipgapi

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:Payment>

<v1:HostedDataID>

HDID customer 1234567

</v1:HostedDataID>

 <v1:ChargeTotal>19.00</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 </v1:Transaction>

</ipgapi:IPGApiOrderRequest>

7.5 Store payment information without performing a transaction at the same time

Besides the possibility to store new records when performing a payment transaction, you can store
payment information using an Action Request. In that way it is also possible to upload multiple records
at once. The following example shows the upload for a record with credit card data. Please note that
also in this case, existing records will be updated if the HostedDataID is the same.

Example of Request to store the data under given hostedDataID:

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns4:IPGApiActionRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns2:Action>

 <ns2:StoreHostedData>

 <ns2:DataStorageItem>

 <ns2:CreditCardData>

<ns3:CardNumber>4035******4977</ns3:CardNumber>

 <ns3:ExpMonth>12</ns3:ExpMonth>

 <ns3:ExpYear>22</ns3:ExpYear>

 </ns2:CreditCardData>

 <ns2:HostedDataID>2a356872-54c7-4d09-800c-0be221e72edb</ns2:HostedDataID>

 </ns2:DataStorageItem>

 <ns2:DataStorageItem>

 <ns2:DE_DirectDebitData>

 <ns3:BankCode>50010060</ns3:BankCode>

 <ns3:AccountNumber>32121604</ns3:AccountNumber>

 </ns2:DE_DirectDebitData>

 <ns2:HostedDataID>6f6de992-e484-4a68-a520-

5f3a32e46fad</ns2:HostedDataID>

 <ns2:BillingName>Dummy Owner</ns2:BillingName>

 </ns2:DataStorageItem>

 </ns2:StoreHostedData>

 </ns2:Action>

 </ns4:IPGApiActionRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The result for a successful storage contains the value true for the parameter <ns4:successfully>:

<ns4:IPGApiActionResponse

 xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

 xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

 xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns4:successfully>true</ns4:successfully>

</ns4:IPGApiActionResponse>

In cases where one or more records have not been stored successfully, the corresponding Hosted Data
IDs are marked in the result:

<ns4:IPGApiActionResponse

 xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

 xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

 xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns4:successfully>true</ns4:successfully>

 <ns2:Error Code="SGSDAS-020300">

 <ns2:ErrorMessage>

 Could not store the hosted data id:

691c7cb3-a752-4d6d-abde-83cad63de258.

Reason: An internal error has occured while

processing your request

 </ns2:ErrorMessage>

 </ns2:Error>

</ns4:IPGApiActionResponse>

Example of response in case of missing mandatory parameter:

<ipgapi:IPGApiActionResponse

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:a1="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1">

<ipgapi:successfully>true</ipgapi:successfully>

 <a1:Error>

 <a1:ErrorMessage>Billing Name is mandatory while creating

hosted data for direct debit.

</a1:ErrorMessage>

 </a1:Error>

<ipgapi:IPGApiActionResponse>

Example of response in case where hosted data has not been stored successfully:

<ipgapi:IPGApiActionResponse xmlns:ipgapi="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:a1="http://ipg-

online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

 <ipgapi:successfully>true</ipgapi:successfully>

 <a1:Error>

 <a1:ErrorMessage>hosted data id:

E99F19BB9D4F4503B8908D9F86C183F8. Invalid expiration date: CreditCard

[cardNumber=492181...2311, expirationMonth=3, expirationYear=2020,

trackData=(masked), trackOneData=(masked), trackTwoData=(masked),

cardCodeValue=(len:null, isChipCard=null,

enrichedCreditCard=EnrichedCreditCard [typeString=null, issuername=null,

country=null, binCreditCardTypes=[], creditCardInformationList=[],

creditCardType=null, cardFunction=null, commercialCardType=null]]

</a1:ErrorMessage>

 </a1:Error>

 </ipgapi:IPGApiActionResponse>

7.6 Avoid duplicate cardholder data for multiple records

To avoid customers using the same cardholder data for multiple user accounts, the additional tag
DeclineHostedDataDuplicates can be sent along with the request. The valid values for this tag are
‘true’/’false’. If the value for this tag is set to ‘true’ and the cardholder data in the request is already found
to be associated with another ‘hosteddataid’, the transaction will be declined.

7.7 Display stored records

Existing records can be displayed using the action Display:

<ns4:IPGApiActionRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns3:Action>

 <ns3:StoreHostedData>

 <ns3:DataStorageItem>

 <ns3:Function>display</ns3:Function>

 <ns3:HostedDataID>

d56feaaf-2d96-4159-8fd6-887e07fc9052

</ns3:HostedDataID>

 </ns3:DataStorageItem>

 </ns3:StoreHostedData>

 </ns3:Action>

</ns4:IPGApiActionRequest>

The response contains the stored information. For security reasons, only the first 6 and last 4 digits of
credit card numbers are being sent back.

<ns4:IPGApiActionResponse

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns4:successfully>true</ns4:successfully>

 <ns4:DataStorageItem>

 <ns2:CreditCardData>

 <ns3:CardNumber>4035*****4977</ns3:CardNumber>

 <ns3:ExpMonth>12</ns3:ExpMonth>

 <ns3:ExpYear>12</ns3:ExpYear>

 </ns2:CreditCardData>

 <ns2:HostedDataID>

d56feaaf-2d96-4159-8fd6-887e07fc9052

</ns2:HostedDataID>

 </ns4:DataStorageItem>

</ns4:IPGApiActionResponse>

If the Hosted Data ID does not exist, the API response indicates an error:

<ns4:IPGApiActionResponse

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns4:successfully>true</ns4:successfully>

 <ns2:Error Code="SGSDAS-020301">

 <ns2:ErrorMessage>

Hosted data id:

http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/ipgapi

6c814261-a843-49fb-bacd-1411d3780286 not found.

</ns2:ErrorMessage>

 </ns2:Error>

</ns4:IPGApiActionResponse>

The value successfully contains false, only if the data vault can’t determined because the request
finished in an error.

7.8 Delete existing records

The action “Delete” allows you to remove data records that are no longer needed:

<ns4:IPGApiActionRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns3:Action>

 <ns3:StoreHostedData>

 <ns3:DataStorageItem>

 <ns3:Function>delete</ns3:Function>

 <ns3:HostedDataID>

9605c2d1-428c-4de2-940e-4bec4737ab5d

</ns3:HostedDataID>

 </ns3:DataStorageItem>

 </ns3:StoreHostedData>

 </ns3:Action>

</ns4:IPGApiActionRequest>

A successful deletion will be confirmed with the following response:

<ns4:IPGApiActionResponse

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns4:successfully>true</ns4:successfully>

</ns4:IPGApiActionResponse>

8 Dynamic Currency Conversion (Global Choice™) and Dynamic Pricing

With First Data’s Global Choice™, foreign customers have the choice to pay for goods and services
purchased online in their home currency when using their Visa or MasterCard credit card for the
payment. The currency conversion is quick and eliminates the need for customers to mentally
calculate the estimated cost of the purchase in their home currency.

International Visa and MasterCard eCommerce customers can make informed decisions about their
online purchases and eradicate any unexpected pricing or foreign exchange conversions on receipt of
their monthly statements.

Another option for your foreign customers is to display all pricing within your online store in their home
currency using our Dynamic Pricing solution. This solution removes the need for your company to set
pricing in any other currency other than your home currency.

If your Store has been activated for one of these product options, you can use this Web Service API to
request the currency exchange rates for such transactions.

http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/ipgapi

8.1 Exchange rate requests for Global Choice™

The following example shows a request to the Web Service API to request a card-related exchange
rate.

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns5:IPGApiActionRequest xmlns:ns5="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:ns2="http://ipg-

online.com/ipgapi/schemas/v1" xmlns:ns3="http://ipg-

online.com/ipgapi/schemas/a1">

 <ns3:Action>

 <ns3:RequestCardRateForDCC>

 <ns3:StoreId>110994125</ns3:StoreId>

 <ns3:BIN>402939</ns3:BIN>

 <ns3:BaseAmount>100.5</ns3:BaseAmount>

 </ns3:RequestCardRateForDCC>

 </ns3:Action>

 </ns5:IPGApiActionRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A successful respose is shown in the following answer:

• The status is given by <ipgapi:successfully>true</ipgapi:successfully>

• The response is wrapped within <ipgapi:CardRateForDCC>

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiActionResponse xmlns:ipgapi="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:a1="http://ipg-

online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

 <ipgapi:successfully>true</ipgapi:successfully>

 <ipgapi:CardRateForDCC>

 <v1:InquiryRateId>49150</v1:InquiryRateId>

 <a1:ForeignCurrencyCode>978</a1:ForeignCurrencyCode>

 <a1:ForeignAmount>130.33</a1:ForeignAmount>

 <a1:ExchangeRate>1.2968</a1:ExchangeRate>

 <a1:DccOffered>true</a1:DccOffered>

 <a1:ExpirationTimestamp>2015-06-

23T13:46:00.000+02:00</a1:ExpirationTimestamp>

 <a1:MarginRatePercentage>3.0000</a1:MarginRatePercentage>

 <a1:ExchangeRateSourceName>REUTERS WHOLESALE

INTERBANK</a1:ExchangeRateSourceName>

 <a1:ExchangeRateSourceTimestamp>2014-07-

14T12:46:00.000+02:00</a1:ExchangeRateSourceTimestamp>

 </ipgapi:CardRateForDCC>

 </ipgapi:IPGApiActionResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

8.2 Exchange rate requests for Dynamic Pricing

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns5:IPGApiActionRequest xmlns:ns5="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:ns2="http://ipg-

online.com/ipgapi/schemas/v1" xmlns:ns3="http://ipg-

online.com/ipgapi/schemas/a1">

 <ns3:Action>

 <ns3:RequestMerchantRateForDynamicPricing>

 <ns3:StoreId>110994125</ns3:StoreId>

 <ns3:ForeignCurrency>826</ns3:ForeignCurrency>

 <ns3:BaseAmount>100.5</ns3:BaseAmount>

 </ns3:RequestMerchantRateForDynamicPricing>

 </ns3:Action>

 </ns5:IPGApiActionRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A successful respose is shown in the following answer from IPG:

• The status is given by <ipgapi:successfully>true</ipgapi:successfully>

• The response is wrapped within <ipgapi:MerchantRateForDynamicPricing>

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiActionResponse xmlns:ipgapi="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:a1="http://ipg-

online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

 <ipgapi:successfully>true</ipgapi:successfully>

 <ipgapi:MerchantRateForDynamicPricing>

 <v1:InquiryRateId>49150</v1:InquiryRateId>

 <a1:ForeignCurrencyCode>978</a1:ForeignCurrencyCode>

 <a1:ForeignAmount>130.33</a1:ForeignAmount>

 <a1:ExchangeRate>1.2968</a1:ExchangeRate>

 <a1:DccOffered>true</a1:DccOffered>

 <a1:ExpirationTimestamp>2015-06-

23T13:46:00.000+02:00</a1:ExpirationTimestamp>

 <a1:MarginRatePercentage>3.0000</a1:MarginRatePercentage>

 <a1:ExchangeRateSourceName>REUTERS WHOLESALE

INTERBANK</a1:ExchangeRateSourceName>

 <a1:ExchangeRateSourceTimestamp>2014-07-

14T12:46:00.000+02:00</a1:ExchangeRateSourceTimestamp>

 </ipgapi:MerchantRateForDynamicPricing>

 </ipgapi:IPGApiActionResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

8.3 Exchange rate responses

All rate responses share the same XML data-type, they are just wrapped in different parent-tags.

Common fields for all requests are the following:

• Success-status: given with <ipgapi:successfully>true</ipgapi:successfully>

• The ID of the request, given with <v1:InquiryRateId>49150</v1:InquiryRateId>

The latter InquiryRateId is later to be used to reference the rate request, when performing a
transaction with a converted transaction amount.

8.4 Conversion offering

A rate request with an offering returned is shown with the following example.

• The offering is denoted with <a1:DccOffered>true</a1:DccOffered>
• Each offering has associated timestamps, given as xml:date-time.

o Source time <a1:ExchangeRateSourceTimestamp>2014-07-
14T12:46:00.000+02:00</a1:ExchangeRateSourceTimestamp>

o Expiration time <a1:ExpirationTimestamp>2015-06-
23T13:46:00.000+02:00</a1:ExpirationTimestamp>

• The source of the curreny-conversion is shown by
<a1:ExchangeRateSourceName>REUTERS WHOLESALE
INTERBANK</a1:ExchangeRateSourceName>

• Finally, the currency conversion results are given by the following fields
o Foreign currency: <a1:ForeignCurrencyCode>978</a1:ForeignCurrencyCode>
o Foreign amount: <a1:ForeignAmount>130.33</a1:ForeignAmount>
o Exchange rate: <a1:ExchangeRate>1.2968</a1:ExchangeRate>

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiActionResponse xmlns:ipgapi="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:a1="http://ipg-

online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

 <ipgapi:successfully>true</ipgapi:successfully>

 <ipgapi:CardRateForDCC>

 <v1:InquiryRateId>49150</v1:InquiryRateId>

 <a1:ForeignCurrencyCode>978</a1:ForeignCurrencyCode>

 <a1:ForeignAmount>130.33</a1:ForeignAmount>

 <a1:ExchangeRate>1.2968</a1:ExchangeRate>

 <a1:DccOffered>true</a1:DccOffered>

 <a1:ExpirationTimestamp>2015-06-

23T13:46:00.000+02:00</a1:ExpirationTimestamp>

 <a1:MarginRatePercentage>3.0000</a1:MarginRatePercentage>

 <a1:ExchangeRateSourceName>REUTERS WHOLESALE

INTERBANK</a1:ExchangeRateSourceName>

 <a1:ExchangeRateSourceTimestamp>2014-07-

14T12:46:00.000+02:00</a1:ExchangeRateSourceTimestamp>

 </ipgapi:CardRateForDCC>

 </ipgapi:IPGApiActionResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

8.5 Declined rate request

A rate request with a declined offering is shown with the following example.

• The declined offering is denoted with <a1:DccOffered>false</a1:DccOffered>

• Also for declined offerings an ID is returned: <v1:InquiryRateId>4051</v1:InquiryRateId>

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiActionResponse xmlns:ipgapi="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:a1="http://ipg-

online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

 <ipgapi:successfully>true</ipgapi:successfully>

 <ipgapi:MerchantRateForDynamicPricing>

 <v1:InquiryRateId>4051</v1:InquiryRateId>

 <a1:DccOffered>false</a1:DccOffered>

 </ipgapi:MerchantRateForDynamicPricing>

 </ipgapi:IPGApiActionResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

8.6 Failed rate request

A rate request which couldn’t be processed successfully is shown by the following example:

• Failure-status: given with <ipgapi:successfully>false</ipgapi:successfully>
• The error-element:

o The error-code by the Code attribute: <a1:Error Code="SGS-27440">
o The human readable message:

<a1:ErrorMessage>no amount given</a1:ErrorMessage>

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiActionResponse xmlns:ipgapi="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:a1="http://ipg-

online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

 <ipgapi:successfully>false</ipgapi:successfully>

 <a1:Error Code="SGS-27440">

 <a1:ErrorMessage>no amount given</a1:ErrorMessage>

 </a1:Error>

 </ipgapi:IPGApiActionResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

8.7 Global Choice™ transactions

For compliance reasons First Data’s Global Choice can only be offered on transactions that take place
in full at that time (e.g. Sale, Refund) and not on any delayed settlement (e.g. pre/post auth, recurring)
due to the fluctuation of the rate of exchange.

Performing transactions with a converted amount involves the following steps

1. Perform a rate request as described in the sections above.
2. Use the returned InquiryRateId to reference the conversion in the payment transaction

message. Use the field DccApplied to denote whether the user has chosen to use the
proposed conversion or not.

Please note that an InquiryRateId may be used only once. After each transaction request, whether
successful or not, regardless of the dccApplied setting used, a new rate has to be requested.
Re-using a conversion-rate will result in an error message CORE-DCC-10, since the rate-inquiry is
already associated with another transaction.

 Step 1: Rate request

The Global Choice™ card-rate-request is shown here to give a complete example:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns5:IPGApiActionRequest xmlns:ns5="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:ns2="http://ipg-

online.com/ipgapi/schemas/v1" xmlns:ns3="http://ipg-

online.com/ipgapi/schemas/a1">

 <ns3:Action>

 <ns3:RequestCardRateForDCC>

 <ns3:StoreId>110994125</ns3:StoreId>

 <ns3:BIN>419681</ns3:BIN>

 <ns3:BaseAmount>202.02</ns3:BaseAmount>

 </ns3:RequestCardRateForDCC>

 </ns3:Action>

 </ns5:IPGApiActionRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The order to be used in a later transaction, the request has to be

• Successful: <ipgapi:successfully>true</ipgapi:successfully>

• With a returned conversion offering <a1:DccOffered>true</a1:DccOffered>

• Not expired <a1:ExpirationTimestamp>2015-06-
23T12:46:00.000+02:00</a1:ExpirationTimestamp>

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiActionResponse xmlns:ipgapi="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:a1="http://ipg-

online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

 <ipgapi:successfully>true</ipgapi:successfully>

 <ipgapi:CardRateForDCC>

 <v1:InquiryRateId>8391</v1:InquiryRateId>

 <a1:ForeignCurrencyCode>978</a1:ForeignCurrencyCode>

 <a1:ForeignAmount>261.98</a1:ForeignAmount>

 <a1:ExchangeRate>1.2968</a1:ExchangeRate>

 <a1:DccOffered>true</a1:DccOffered>

 <a1:ExpirationTimestamp>2015-06-

23T12:46:00.000+02:00</a1:ExpirationTimestamp>

 <a1:MarginRatePercentage>3.0000</a1:MarginRatePercentage>

 <a1:ExchangeRateSourceName>REUTERS WHOLESALE

INTERBANK</a1:ExchangeRateSourceName>

 <a1:ExchangeRateSourceTimestamp>2014-07-

14T12:46:00.000+02:00</a1:ExchangeRateSourceTimestamp>

 </ipgapi:CardRateForDCC>

 </ipgapi:IPGApiActionResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 Step 2: Using the conversion rate for the payment transaction

The Global Choice™ feature is selected by the element <ns2:InquiryRateReference>.
o The rate-id is used to reference the conversion rate:

<ns2:InquiryRateId>8391</ns2:InquiryRateId>

o The users choice whether to apply the proposed rate is specified by:
<ns2:DccApplied>true</ns2:DccApplied>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns5:IPGApiOrderRequest xmlns:ns5="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:ns2="http://ipg-

online.com/ipgapi/schemas/v1" xmlns:ns3="http://ipg-

online.com/ipgapi/schemas/a1">

 <ns2:Transaction>

 <ns2:CreditCardTxType>

 <ns2:StoreId>110994125</ns2:StoreId>

 <ns2:Type>return</ns2:Type>

 </ns2:CreditCardTxType>

 <ns2:Payment>

 <ns2:ChargeTotal>202.02</ns2:ChargeTotal>

 <ns2:Currency>826</ns2:Currency>

 </ns2:Payment>

 <ns2:TransactionDetails>

 <ns2:OrderId>API-Test 7dcb3590-2fa7-4702-afab-

adfd34390620 DCCTest::testSaleReturnDCC(110)</ns2:OrderId>

 <ns2:InquiryRateReference>

 <ns2:InquiryRateId>8391</ns2:InquiryRateId>

 <ns2:DccApplied>true</ns2:DccApplied>

 </ns2:InquiryRateReference>

 </ns2:TransactionDetails>

 </ns2:Transaction>

 </ns5:IPGApiOrderRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

For completeness the successful response is also shown here.

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiOrderResponse xmlns:ipgapi="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:a1="http://ipg-

online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

<ipgapi:ApprovalCode>Y:000000:0014746213:PPXM:0000</ipgapi:ApprovalCode>

 <ipgapi:AVSResponse>PPX</ipgapi:AVSResponse>

 <ipgapi:Brand>VISA</ipgapi:Brand>

 <ipgapi:Country>MLT</ipgapi:Country>

<ipgapi:CommercialServiceProvider>BOSMS</ipgapi:CommercialServiceProvider>

 <ipgapi:OrderId>API-Test 7dcb3590-2fa7-4702-afab-adfd34390620

DCCTest::testSaleReturnDCC(110)</ipgapi:OrderId>

 <ipgapi:PaymentType>CREDITCARD</ipgapi:PaymentType>

<ipgapi:ProcessorApprovalCode>000000</ipgapi:ProcessorApprovalCode>

 <ipgapi:ProcessorCCVResponse>M</ipgapi:ProcessorCCVResponse>

 <ipgapi:ProcessorResponseCode>00</ipgapi:ProcessorResponseCode>

<ipgapi:ProcessorResponseMessage>Authorised</ipgapi:ProcessorResponseMessag

e>

 <ipgapi:ReferencedTDate>1407154820</ipgapi:ReferencedTDate>

 <ipgapi:TDate>1407154821</ipgapi:TDate>

 <ipgapi:TDateFormatted>2014.08.04 14:20:21

(CEST)</ipgapi:TDateFormatted>

 <ipgapi:TerminalID>80000012</ipgapi:TerminalID>

 <ipgapi:TransactionResult>APPROVED</ipgapi:TransactionResult>

 <ipgapi:TransactionTime>1407154821</ipgapi:TransactionTime>

 </ipgapi:IPGApiOrderResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

9 Payment URL

Payment URL is a functionality that allows you to provide a link to your customers (e.g. in an email
invoice, WhatsApp message, SMS, QR code, etc.) which then takes the customer to a First Data-hosted
page to securely make the payment with their preferred payment method, whenever convenient for
them.

This is especially useful in scenarios where goods get paid after delivery, where no goods get shipped
at all (e.g. final payment for trips that have been booked months ago) or for the payment of monthly bills.

You can also implement this functionality for unsuccessful purchases where the original payment
transaction has been declined so that you can proactively give your customer a second chance to make
their purchase.

The First Data Gateway provides

• The capability to request a Payment URL (link) for a specific amount through this Web Service
API

• A hosted payment page where the customer can select the preferred payment method (based
on the payment methods that are activated for your account) and make the payment

• A hosted result page that tells the customer if the payment was successful or not, including a
Retry button where the customer can chose a different payment method in case the transaction
was not successful

• Support for the specific fields that are required for Visa transactions with MCC 6012 in the UK

9.1 Payment URL creation

The request for a Payment URL includes transaction type, amount and currency as well as the language
that shall be used on the payment page that will be shown to the customer after accessing the URL.

The URL request stays valid for 182 days (182 * 24 * 3600 seconds) + 1 day (on which the URL was
generated).
A merchant can override these settings by setting 'Expiration element' to desired value, which is an
expiration date in unix timestamp (in seconds, while IPG calculates it in milliseconds), this value shall
be calculated by a merchant himself.

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns5:IPGApiActionRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">

 <ns2:Action>

http://schemas.xmlsoap.org/soap/envelope/
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/v1

 <ns2:CreatePaymentURL>

 <ns2:Transaction>

 <ns3:PaymentUrlTxType>

 <ns3:StoreId>120995000</ns3:StoreId>

 <ns3:Type>sale</ns3:Type>

 </ns3:PaymentUrlTxType>

 <ns3:Payment>

 <ns3:ChargeTotal>13.99</ns3:ChargeTotal>

 <ns3:Currency>EUR</ns3:Currency>

 </ns3:Payment>

 <ns3:TransactionDetails/>

 <ns3:ClientLocale>

 <ns3:Language>en</ns3:Language>

 <ns3:Country>GB</ns3:Country>

 </ns3:ClientLocale>

 </ns2:Transaction>

 </ns2:CreatePaymentURL>

 </ns2:Action>

 </ns5:IPGApiActionRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The Response contains the Payment URL:

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiActionResponse xmlns:ipgapi="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:a1="http://ipg-

online.com/ipgapi/schemas/a1" xmlns:v1="http://ipg-

online.com/ipgapi/schemas/v1">

 <ipgapi:successfully>true</ipgapi:successfully>

 <ipgapi:OrderId>A-a22cd17f-0e50-4541-9404-159aa62815f0</

 ipgapi:OrderId>

 <ipgapi:TransactionId>88963651</ipgapi:TransactionId>

 <ipgapi:paymentUrl>https://test.ipg-

online.com/connect/gateway/processing?storename=120995000&oid=A-

6d6f02ee-1020-4935-a8fd-e8d34e0ace03&paymentUrlId=efc0d59b-7128-4d36-

ba7d-0f7b642fd9ea</ipgapi:paymentUrl>

 </ipgapi:IPGApiActionResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

When the customer completed the payment transaction, the gateway can send a server-to-server
transaction notification to a defined Notification URL. Please contact your local support team to get
your URL registered for these notifications.

9.2 Payment URL deletion

For cases, when you need to prevent your customers to make a payment twice, you can use
“DeletePaymentURL” feature.

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns5:IPGApiActionRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

http://schemas.xmlsoap.org/soap/envelope/
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/v1
http://ipg-online.com/ipgapi/schemas/v1
https://test.ipg-online.com/connect/gateway/processing?storename=120995000&oid=A-6d6f02ee-1020-4935-a8fd-e8d34e0ace03&paymentUrlId=efc0d59b-7128-4d36-ba7d-0f7b642fd9ea%3c/ipgapi:paymentUrl
https://test.ipg-online.com/connect/gateway/processing?storename=120995000&oid=A-6d6f02ee-1020-4935-a8fd-e8d34e0ace03&paymentUrlId=efc0d59b-7128-4d36-ba7d-0f7b642fd9ea%3c/ipgapi:paymentUrl
https://test.ipg-online.com/connect/gateway/processing?storename=120995000&oid=A-6d6f02ee-1020-4935-a8fd-e8d34e0ace03&paymentUrlId=efc0d59b-7128-4d36-ba7d-0f7b642fd9ea%3c/ipgapi:paymentUrl
https://test.ipg-online.com/connect/gateway/processing?storename=120995000&oid=A-6d6f02ee-1020-4935-a8fd-e8d34e0ace03&paymentUrlId=efc0d59b-7128-4d36-ba7d-0f7b642fd9ea%3c/ipgapi:paymentUrl
http://schemas.xmlsoap.org/soap/envelope/
http://ipg-online.com/ipgapi/schemas/ipgapi

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">
<ns2:Action>

 <ns2:DeletePaymentURL>

 <ns2:StoreId>120995000</ns2:StoreId>

<ns2:PaymentUrlID>e2fd0144-7644-4a5e-

9e72-71cfa14c37ff</ns2:PaymentUrlID>

 </ns2:DeletePaymentURL>

 </ns2:Action>

 </ns5:IPGApiActionRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

When processing a Payment URL an additional check ensures the Payment URL has not been
voided, and if it has, the URL will lead the customer to a screen that explains that the URL is no longer
valid.

9.3 Payment URL custom text

For cases where you would like to add a free text to be shown above the payment options on the page
that the consumer will see when going to the URL for making the payment, you can submit an element
hostedPaymentPageText in your request to our Gateway:

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns5:IPGApiActionRequest

xmlns:ns5="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/v1">
<ns2:Action>

<ns2:CreatePaymentURL>

<ns2:Transaction>

<ns3:PaymentUrlTxType>

<ns3:StoreId>120995000</ns3:StoreId>

<ns3:Type>sale</ns3:Type>

</ns3:PaymentUrlTxType>

<ns3:Payment>

<ns3:Currency>EUR</ns3:Currency>

</ns3:Payment>

<ns3:TransactionDetails/>

<ns3:ClientLocale>

<ns3:Language>en</ns3:Language>

<ns3:Country>GB</ns3:Country>

</ns3:ClientLocale>

</ns2:Transaction>

<ns2:hostedPaymentPageText>This is a sample text

</ns2:hostedPaymentPageText>

</ns2:CreatePaymentURL>

</ns2:Action>

http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/v1
http://schemas.xmlsoap.org/soap/envelope/
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/v1

10 3-D Secure Authentication

10.1 3-D Secure authentication (3DS 1.0)

3D Secure is an authentication mechanism designed to reduce fraud and chargebacks in relation to
Card-Not-Present transactions.

With our Connect solution (see separate Integration Guide Connect), we can manage the required
flows for the authentication process for you. If you should however prefer to handle this process and
the required redirections yourself, the Web Service API allows you to make single API calls for the
required steps:

1. You make an API call to verify if the cardholder is enrolled to participate in a 3D Secure
program

2. For the cases where the cardholder is enrolled, you redirect your customer to the card issuer’s
Access Control Server (ACS) using the URL that you received in the respose to your
verification request

3. You receive the payer authentication response from the card issuer which includes encoded
confirmation of the authentication status and send this information in a second API call so that
we can verify the signature, decode it and provide you with the result of the authentication

4. You finally trigger the financial transaction (Sale or Pre-Authorisation), referencing to the
obtained authentication with a Transaction ID

API call for Step 1

To verify if the card has been enrolled you need to submit a verification request with an
AuthenticateTransaction parameter set to “true” and TxType = payerAuth.

The following represents an example of a Verification Request (VEReq) with TxType=payerAuth:

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns4:IPGApiOrderRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:Transaction>

 <ns2:CreditCardTxType>

 <ns2:StoreId>120995000</ns2:StoreId>

 <ns2:Type>payerAuth</ns2:Type>

 </ns2:CreditCardTxType>

 <ns2:CreditCardData>

 <ns2:CardNumber>5426*****4979</ns2:CardNumber>

 <ns2:ExpMonth>12</ns2:ExpMonth>

 <ns2:ExpYear>24</ns2:ExpYear>

 <ns2:CardCodeValue>XXX</ns2:CardCodeValue>

 </ns2:CreditCardData>

 <ns2:CreditCard3DSecure>

 <ns2:AuthenticateTransaction>true</ns2:AuthenticateTransaction>

 </ns2:CreditCard3DSecure>

 <ns2:Payment>

 <ns2:ChargeTotal>13.99</ns2:ChargeTotal>

 <ns2:Currency>978</ns2:Currency>

 </ns2:Payment>

 </ns2:Transaction>

 </ns4:IPGApiOrderRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Our integrated Merchant Plug-in (MPI) then checks the card participation from the 3D Secure directory
and returns the redirection URL of the card issuer’s Access Control Server (ACS).

If the card is enrolled in 3D Secure, the response to the verification request should contain the
following key values:

• PaReq: The Payer Authentication Request, required to initiate the authentication

• ACS URL: The target of 3D Secure redirection

• Term URL: The URL, that the ACS should send the outcome to in your application

• MD : Merchant Data which have to be sent to ACS URL

The following represents an example of a VEReq response:

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiOrderResponse

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:a1="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1">

 <ipgapi:ApprovalCode>?:waiting 3dsecure</ipgapi:ApprovalCode>

 <ipgapi:Brand>MASTERCARD</ipgapi:Brand>

<ipgapi:CommercialServiceProvider>TELECASH</ipgapi:CommercialServiceProvide

r>

 <ipgapi:OrderId>A-4b9804e6410b84475809e59e1b26</ipgapi:OrderId>

 <ipgapi:IpgTransactionId>8383394827</ipgapi:IpgTransactionId>

 <ipgapi:PaymentType>CREDITCARD</ipgapi:PaymentType>

 <ipgapi:TDate>1493130774</ipgapi:TDate>

 <ipgapi:TDateFormatted>2017.04.25

16:32:54(CEST)</ipgapi:TDateFormatted>

 <ipgapi:TransactionTime>1493130774</ipgapi:TransactionTime>

 <ipgapi:Secure3DResponse>

 <v1:Secure3DVerificationResponse>

 <v1:VerificationRedirectResponse>

 <v1:AcsURL>https://3ds-

acs.test.modirum.com/mdpayacs/pareq</v1:AcsURL>

 <v1:PaReq> c7fb83b8ag...73t4a827t4af8738a</v1:PaReq>
<v1:TermUrl>https://www.mywebshop.com/process3dSecure/</v1:TermUrl>

 <v1:MD>MD1234....sdfk</v1:MD>

 </v1:VerificationRedirectResponse>

 </v1:Secure3DVerificationResponse>

 </ipgapi:Secure3DResponse>

 </ipgapi:IPGApiOrderResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

API call for Step 3

After you have redirected the cardholder for authentication and have received the payer authentication
response from the card issuer, you submit the PARes and MD in your second call to our API. The
transaction type must have the same value as in API call for Step 1 message example.

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

https://www.mywebshop.com/process3dSecure

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns4:IPGApiOrderRequest

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:Transaction>

 <ns2:CreditCardTxType>

 <ns2:StoreId>120995000</ns2:StoreId>

 <ns2:Type>payerAuth</ns2:Type>

 </ns2:CreditCardTxType>

 <ns2:CreditCard3DSecure>

 <ns2:Secure3DRequest>

 <ns2:Secure3DAuthenticationRequest>

 <ns2:AcsResponse>

 <ns2:MD>MDasdadA5809e59e1b263b4aa9</ns2:MD>

 <ns2:PaRes>eJzVWNeyq8iS…83IBmfhg</ns2:PaRes>

 </ns2:AcsResponse>

 </ns2:Secure3DAuthenticationRequest>

 </ns2:Secure3DRequest>

 </ns2:CreditCard3DSecure>

 <ns2:Payment/>

 <ns2:TransactionDetails>

 <ns2:IpgTransactionId>8383394827</ns2:IpgTransactionId>

 </ns2:TransactionDetails>

 </ns2:Transaction>

 </ns4:IPGApiOrderRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Our Gateway verifies the response and provides the result back to you, including the data required as
the part of authorization request.

The following represents the example of an Authentication Response:

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ipgapi:IPGApiOrderResponse

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:a1="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1">

 <ipgapi:ApprovalCode>Y:ECI2/5:Authenticated</ipgapi:ApprovalCod

e>

 <ipgapi:Brand>MASTERCARD</ipgapi:Brand>

 <ipgapi:CommercialServiceProvider>TELECASH</ipgapi:CommercialSe

rviceProvider>

 <ipgapi:OrderId>A-123456789</ipgapi:OrderId>

 <ipgapi:IpgTransactionId>8383394827</ipgapi:IpgTransactionId>

 <ipgapi:PaymentType>CREDITCARD</ipgapi:PaymentType>

 <ipgapi:TDate>1493137253</ipgapi:TDate>

 <ipgapi:TDateFormatted>2017.04.25 18:20:53

(CEST)</ipgapi:TDateFormatted>

 <ipgapi:TransactionResult>APPROVED</ipgapi:TransactionResult>

 <ipgapi:TransactionTime>1493137253</ipgapi:TransactionTime>

 <ipgapi:Secure3DResponse>

 <v1:ResponseCode3dSecure>1</v1:ResponseCode3dSecure>

 </ipgapi:Secure3DResponse>

 </ipgapi:IPGApiOrderResponse>

 </SOAP-ENV:Body>

http://schemas.xmlsoap.org/soap/envelope/
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/v1

</SOAP-ENV:Envelope>

API call for Step 4

The following represents an example of a Sale transaction initiated after previously authenticated
request:

<soap:Envelope xmlns:Soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ns3:IPGApiOrderRequest

xmlns="http://ipg-online.com/ipgapi/schemas/a1"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/ipgapi"

 <ns2:Transaction>

 <ns2:CreditCardTxType>

 <ns2:StoreId>120995000</ns2:StoreId>

 <ns2:Type>sale</ns2:Type>

 </ns2:CreditCardTxType>

 <ns2:TransactionDetails>

 <ns2:IpgTransactionId>8383394827</ns2:IpgTransactionId>

 </ns2:TransactionDetails>

 </ns2:Transaction>

 </ns3:IPGApiOrderRequest>

 </soap:Body>

</soap:Envelope>

If you should have your own Merchant Plug-in (MPI) for 3D Secure or use a 3rd party provider for this,
you can alternatively submit the result of the authentication process in your Sale or Pre-Authorisation
transaction message to the Web Service API. See CreditCard3DSecure elements in the XML-Tag
overview chapter of this document.

In principle, it may occur that 3D Secure authentications cannot be processed successfully for
technical reasons. If one of the systems involved in the authentication process is temporarily not
responding, the payment transaction will be processed as a “regular” eCommerce transaction (ECI 7).
A liability shift to the card issuer for possible chargebacks is not warranted in this case. If you
prefer that such transactions shall not be processed at all, our technical support team can block them
for your Store on request.

10.2 EMV 3-D Secure authentication (3DS 2.0)

The new EMV 3-D Secure protocol (also known as 3DS 2.0) specification has been developed for the
benefit of the entire industry to collaboratively develop the next generation of 3-D Secure protocol. The
new version promotes frictionless consumer authentication and enables consumers to authenticate
themselves with their card issuer when making card-not-present e-commerce purchases.

Due to continuous development and changes demanded by payment schemes and issuers the
integration guide for EMV 3DS protocol has been maintained separately.
Detailed description and examples of the flows can be found on Gateway’s online portal:

https://docs.firstdata.com/org/gateway/node/476

11 Purchasing cards

https://docs.firstdata.com/org/gateway/node/476

Purchasing Cards offer businesses the ability to allow their employees to purchase items with a credit
card while providing additional information on sales tax, customer code etc. When providing specific
details on the payment being made with a Purchasing card favourable addendum interchange rates
are applied.

There are three levels of details required for Purchasing Cards:

• Level I — The first level is the standard transaction data; no enhanced data is required at this
level.

• Level II — The second level requires that data such as tax amount and customer code be
supplied in addition to the standard transaction date. (Visa only have a level II option)

• Level III — The third level allows a merchant to pass a detailed accounting of goods and
services purchased to the buyer. All the data for Level I and Level II must also be passed to
participate in Level III. (Visa and Mastercard).

PurchaseCard element can contain contain 0-100 LineItemData elements.
Detailed description of all PurchaseCard elements can be found in the XML-Tag overview chapter of
this document.

The following represents an example of a purchasing card L3 transaction including a single
LineItemData element and mandatory fields:

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns4:IPGApiOrderRequest xmlns:ns4="http://ipg-

online.com/ipgapi/schemas/ipgapi" xmlns:ns2="http://ipg-

online.com/ipgapi/schemas/a1" xmlns:ns3="http://ipg-

online.com/ipgapi/schemas/v1">

 <ns3:Transaction>

 <ns3:CreditCardTxType>

 <ns3:StoreId>110995100</ns3:StoreId>

 <ns3:Type>sale</ns3:Type>

 </ns3:CreditCardTxType>

 <ns3:CreditCardData>

 <ns3:CardNumber>4035*****4977</ns3:CardNumber>

 <ns3:ExpMonth>12</ns3:ExpMonth>

 <ns3:ExpYear>18</ns3:ExpYear>

 <ns3:CardCodeValue>XXX</ns3:CardCodeValue>

 </ns3:CreditCardData>

 <ns3:Payment>

 <ns3:ChargeTotal>23</ns3:ChargeTotal>

 <ns3:Currency>GBP</ns3:Currency>

 </ns3:Payment>

 <ns3:TransactionDetails>

 <ns3:PurchaseCard>

 <ns3:CustomerReferenceID>9632587410</ns3:CustomerRe

ferenceID>

 <ns3:SupplierInvoiceNumber>321456987</ns3:SupplierI

nvoiceNumber>

 <ns3:SupplierVATRegistrationNumber>GB18150620</ns3:

SupplierVATRegistrationNumber>

 <ns3:LineItemData>

 <ns3:CommodityCode>0</ns3:CommodityCode>

 <ns3:Description>DIRECT MARKETING

PURCH</ns3:Description>

 <ns3:Quantity>200000</ns3:Quantity>

 <ns3:UnitOfMeasure>TPR</ns3:UnitOfMeasure>

http://schemas.xmlsoap.org/soap/envelope/
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/v1
http://ipg-online.com/ipgapi/schemas/v1

 <ns3:UnitPrice>1200</ns3:UnitPrice>

 <ns3:LineItemTotal>1200</ns3:LineItemTotal>

 </ns3:LineItemData>

 </ns3:PurchaseCard>

 </ns3:TransactionDetails>

 </ns3:Transaction>

 </ns4:IPGApiOrderRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If LineItemData element were removed, the example above would represent a purchasing card level II
transaction.

The following represents an example of a purchasing card Level III transaction including multipule
LineItemData elements with all possible fields populated:

<?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <ns3:IPGApiOrderRequest

xmlns:ns3="http://ipg-online.com/ipgapi/schemas/ipgapi"

xmlns:ns2="http://ipg-online.com/ipgapi/schemas/v1"

xmlns:ns4="http://ipg-online.com/ipgapi/schemas/a1">

 <ns2:Transaction>

 <ns2:CreditCardTxType>

 <ns2:StoreId>110995100</ns2:StoreId>

 <ns2:Type>preAuth</ns2:Type>

 </ns2:CreditCardTxType>

 <ns2:CreditCardData>

 <ns2:CardNumber>4035*****4977</ns2:CardNumber>

 <ns2:ExpMonth>12</ns2:ExpMonth>

 <ns2:ExpYear>18</ns2:ExpYear>

 <ns2:CardCodeValue>XXX</ns2:CardCodeValue>

 </ns2:CreditCardData>

 <ns2:Payment>

 <ns2:SubTotal>15</ns2:SubTotal>

 <ns2:ValueAddedTax>4</ns2:ValueAddedTax>

 <ns2:DeliveryAmount>5</ns2:DeliveryAmount>

 <ns2:ChargeTotal>24</ns2:ChargeTotal>

 <ns2:Currency>GBP</ns2:Currency>

 </ns2:Payment>

 <ns2:TransactionDetails>

 <ns2:PurchaseCard>

 <ns2:CustomerReferenceID>9632587410</ns2:CustomerReferenceID>

 <ns2:SupplierInvoiceNumber>321456987</ns2:SupplierInvoiceNumber>

 <ns2:SupplierVATRegistrationNumber>GB18150620</ns2:SupplierVATRegistr

ationNumber>

 <ns2:TotalDiscountAmountAndRate>

 <ns2:Amount>55</ns2:Amount>

 <ns2:Rate>99.99</ns2:Rate>

 </ns2:TotalDiscountAmountAndRate>

 <ns2:VATShippingAmountAndRate>

 <ns2:Amount>35</ns2:Amount>

 <ns2:Rate>0.10</ns2:Rate>

 </ns2:VATShippingAmountAndRate>

 <ns2:LineItemData>

 <ns2:CommodityCode>1112</ns2:CommodityCode>

 <ns2:ProductCode>22369852147</ns2:ProductCode>

<ns2:Description>DIRECTMARKETINGPURCH</ns2:Description>

 <ns2:Quantity>200000</ns2:Quantity>

 <ns2:UnitOfMeasure>TPR</ns2:UnitOfMeasure>

 <ns2:UnitPrice>1200</ns2:UnitPrice>

 <ns2:VATAmountAndRate>

 <ns2:Amount>9999</ns2:Amount>

 <ns2:Rate>0.1</ns2:Rate>

 </ns2:VATAmountAndRate>

 <ns2:DiscountAmountAndRate>

 <ns2:Amount>13</ns2:Amount>

 <ns2:Rate>99.99</ns2:Rate>

 </ns2:DiscountAmountAndRate>

 <ns2:LineItemTotal>1200</ns2:LineItemTotal>

 </ns2:LineItemData>

 <ns2:LineItemData>

 <ns2:CommodityCode>5647</ns2:CommodityCode>

 <ns2:ProductCode>22369852148</ns2:ProductCode>

 <ns2:Description>2-DIRECTMARKETING

PURCH</ns2:Description>

 <ns2:Quantity>200001</ns2:Quantity>

 <ns2:UnitOfMeasure>DAY</ns2:UnitOfMeasure>

 <ns2:UnitPrice>1201</ns2:UnitPrice>

 <ns2:VATAmountAndRate>

 <ns2:Amount>9999</ns2:Amount>

 <ns2:Rate>0.2</ns2:Rate>

 </ns2:VATAmountAndRate>

 <ns2:DiscountAmountAndRate>

 <ns2:Amount>14</ns2:Amount>

 <ns2:Rate>99.99</ns2:Rate>

 </ns2:DiscountAmountAndRate>

 <ns2:LineItemTotal>1202</ns2:LineItemTotal>

 </ns2:LineItemData>

 <ns2:LineItemData>

 <ns2:CommodityCode>575</ns2:CommodityCode>

 <ns2:ProductCode>22369852149</ns2:ProductCode>

 <ns2:Description>3-DIRECTMARKETING

PURCH</ns2:Description>

 <ns2:Quantity>200002</ns2:Quantity>

 <ns2:UnitOfMeasure>ACR</ns2:UnitOfMeasure>

 <ns2:UnitPrice>1203</ns2:UnitPrice>

 <ns2:VATAmountAndRate>

 <ns2:Amount>9999</ns2:Amount>

 <ns2:Rate>0.3</ns2:Rate>

 </ns2:VATAmountAndRate>

 <ns2:DiscountAmountAndRate>

 <ns2:Amount>15</ns2:Amount>

 <ns2:Rate>99.99</ns2:Rate>

 </ns2:DiscountAmountAndRate>

 <ns2:LineItemTotal>1204</ns2:LineItemTotal>

 </ns2:LineItemData>

 </ns2:PurchaseCard>

 </ns2:TransactionDetails>

 </ns2:Transaction>

 </ns3:IPGApiOrderRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

12 XML-Tag overview

12.1 Overview by transaction type

The following shows which XML-tags need to be submitted for each transaction type as well as which
ones can optionally be used. Please only use the fields stated below and also note the order.

For XML-tags related to Card Present transactions with a chip reader and PIN entry device please refer
to the xsd’s in the Appendix of this document.

Abbreviations:
m: mandatory
o: optional
d: optional with default value
a and b: maximum one of the two values (In case you will find a value=”a” in the column for a
transaction type, it means either all those elements marked with “a” need to be present in the
message, or the one marked with “b”.)
1: if a or b is provided optional,

mandatory if a and b have not been provided
3: mandatory for 3D Secure transactions
s: see details in 3D Secure chapter
f: mandatory for Visa transactions of UK-based Financial Institutions with Merchant

Category Code 6012
p: mandatory for split shipment
q: see details in Purchasing cards chapter

Path/ Credit Card

Name

all paths relative to
ipgapi:IPGApiOrderRequest/
v1:Transaction S

a
le

F
o
rc

e
T

ic
k
e
t

P
re

A
u
th

P
o
s
tA

u
th

R
e
tu

rn

C
re

d
it

V
o
id

v1:CreditCardTxType/
v1:Type

m m m m m m m

v1:CreditCardData/
v1:CardNumber

a a a a

v1:CreditCardData/
v1:ExpMonth

a a a a

v1:CreditCardData/
v1:ExpYear

a a a a

v1:CreditCardData/
v1:CardCodeValue

o o o o

v1:CreditCardData/
v1:TrackData

b b b b

v1:CreditCardData/
v1:Brand

o o o o

v1:CreditCard3DSecure/
v1:VerificationResponse

3 3 3 3

v1:CreditCard3DSecure/
v1:PayerAuthenticationResponse

s s s s

v1:CreditCard3DSecure/
v1:DRSPECI

s s s s

v1:CreditCard3DSecure/
v1:AuthenticationValue

s s s s

v1:CreditCard3DSecure/
v1:XID

s s s s

v1:CreditCard3DSecure/
v1:AuthenticateTransaction

s s s s

v1:CreditCard3DSecure/
v1:Secure3DRequest/
v1: Secure3DAuthenticationRequest/
v1: IVRAuthenticationRequest

s s s s

v1:CreditCard3DSecure/
v1:Secure3DRequest/
v1:Secure3DAuthenticationRequest/
v1:AcsResponse

s s s s

v1:CreditCard3DSecure/
v1:Secure3DRequest/
v1: Secure3DVerificationRequest
v1: IVRVerificationRequest

s s s s

v1:CreditCard3DSecure/
v1:Secure3DverificationResponse/
v1:IVRVerificationResponse

s s s s

v1:CreditCard3DSecure/
v1:Secure3DverificationResponse/
v1:VerificationRedirectResponse

s s s s

v1:CreditCardData/
v1:Upop

u u u u

v1:cardFunction/
v1:Type

o o o o

v1:DE_DirectDebitTxType/
v1:Type

v1:DE_DirectDebitData/
v1:TrackData

v1:DE_DirectDebitData/
v1:MandateReference

v1:DE_DirectDebitData/
v1:MandateType

v1:DE_DirectDebitData/
v1:DateOfMandate

v1:Payment/
v1:HostedDataID

1 1 1 1

v1:Payment/
v1:HostedDataStoreID

1 1 1 1

v1:Payment/
v1:DeclineHostedDataDuplicates

1 1 1 1

v1:Payment/
v1:numberOfInstallments

o

v1:Payment/
v1:installmentsInterest

d

v1:Payment/
v1:installmentDelayMonths

o

v1:Payment/
v1:SubTotal

o o o o o o

v1:Payment/
v1:ValueAddedTax

o o o o o o

v1:Payment/
v1:localTax

o o o o o o

v1:Payment/
v1:DeliveryAmount

o o o o o o

v1:Payment/
v1:ChargeTotal

m m m m m m

v1:Payment/
v1:Currency

m m m m m m

v1:recurringType
o

v1:WalletType
o

v1:WalletID
o

v1:TransactionDetails/
v1:OrderId

o o o m m o a

v1:TransactionDetails/
v1:MerchantTransactionId

o o o o o o o

v1:TransactionDetails/
v1:Ip

o o o

v1:TransactionDetails/
v1:ReferenceNumber

 m

v1:TransactionDetails/
v1:Tdate

 a

v1:TransactionDetails/
v1:ReferencedMerchantTransactionId

 b

v1:TransactionDetails/
v1:TransactionOrigin

d d d

v1:TransactionDetails/
v1:InvoiceNumber

o o o o o

v1:TransactionDetails/
v1:PONumber

o o o o

v1:TransactionDetails/
v1:DynamicMerchantName

o o o o

v1:TransactionDetails/
v1:Comments

o o o o o o o

v1:TransactionDetails/
v1:PurchaseCard

q q q q q q q

v1:TransactionDetails/
v1:Terminal/
v1:TerminalID

o o o o

v1:TransactionDetails/
v1:InquiryRateReference

o o o

v1:TransactionDetails/
v1:SplitShipment/
v1:SequenceCount

 o o

v1:TransactionDetails/
v1:SplitShipment/
v1:FinalShipment

 p

v1:Billing/
v1:CustomerID

o o o o

v1:Billing/
v1:Name

o o o o

v1:Billing/
v1:Company

o o o o

v1:Billing/
v1:Address1

o o o o

v1:Billing/
v1:Address2

o o o o

v1:Billing/
v1:City

o o o o

v1:Billing/
v1:State

o o o o

v1:Billing/
v1:Zip

o o o o

v1:Billing/
v1:Country

o o o o

v1:Billing/
v1:Phone

o o o o

v1:Billing/
v1:Fax

o o o o

v1:Billing/
v1:Email

o o o o

v1:Shipping/
v1:Type

o o o o

v1:Shipping/
v1:Name

o o o o

v1:Shipping/
v1:Address1

o o o o

v1:Shipping/
v1:Address2

o o o o

v1:Shipping/
v1:City

o o o o

v1:Shipping/
v1:State

o o o o

v1:Shipping/
v1:Zip

o o o o

v1:Shipping/
v1:Country

o o o o

v1:Basket/
v1:Item/
v1:ID

o o o o

v1:Basket/
v1:Item/
v1:Description

o o o o

v1:Basket/
v1:Item/
v1:SubTotal

v1:Basket/
v1:Item/
v1:ValueAddedTax

v1:Basket/
v1:Item/
v1:DeliveryAmount

v1:Basket/
v1:Item/
v1:ChargeTotal

o o o o

v1:Basket/
v1:Item/
v1:Currency

v1:Basket/
v1:Item/
v1:Quantity

o o o o

v1:Basket/
v1:Item/
v1:Option/
v1:Name

o o o o

v1:Basket/
v1:Item/
v1:Choice

o o o o

v1:TopUpTxType/
v1:MPCharge/
v1:MNSP

v1:TopUpTxType/
v1:MPCharge/
v1:MSISDN

v1:TopUpTxType/
v1:MPCharge/
v1:PaymentType

v1:ClientLocale/
v1:Language

d d d d d d d

v1:ClientLocale/
v1:Country

d d d d d d d

v1:MCC6012Details/
v1:BirthDate

f f f

v1:MCC6012Details/
v1:AccountFirst6

f,a f,a f,a

v1:MCC6012Details/
v1:AccountLast4

f,a f,a f,a

v1:MCC6012Details/
v1:AccountNumber

f,b f,b f,b

v1:MCC6012Details/
v1:PostCode

f f f

v1:MCC6012Details/
v1:Surname

f f f

Path/

PayPal

Mobile
Top-
up

Name

all paths relative to
ipgapi:IPGApiOrderRequest/
v1:Transaction P

o
s
tA

u
th

R
e
tu

rn

C
re

d
it

V
o
id

M
P

C
h
a
rg

e

v1:CreditCardTxType/
v1:Type

v1:CreditCardData/
v1:CardNumber

v1:CreditCardData/
v1:ExpMonth

v1:CreditCardData/
v1:ExpYear

v1:CreditCardData/
v1:CardCodeValue

v1:CreditCardData/
v1:TrackData

v1:CreditCard3DSecure/
v1:VerificationResponse

v1:CreditCard3DSecure/
v1:PayerAuthenticationResponse

v1:CreditCard3DSecure/
v1:AuthenticationValue

v1:CreditCard3DSecure/
v1:XID

v1:DE_DirectDebitTxType/
v1:Type

v1:DE_DirectDebitData/
v1:MandateReference

v1:DE_DirectDebitData/
v1:MandateType

v1:DE_DirectDebitData/
v1:TrackData

v1:PayPalTxType/
v1:Type

m m m m

v1:Payment/
v1:HostedDataID

v1:Payment/
v1:HostedDataStoreID

v1:Payment/
v1:DeclineHostedDataDuplicates

v1:Payment/
v1:SubTotal

o o o o

v1:Payment/
v1:ValueAddedTax

o o o o

v1:Payment/
v1:DeliveryAmount

o o o o

v1:Payment/
v1:ChargeTotal

m m m m

v1:Payment/
v1:Currency

m m m m

v1:TransactionDetails/
v1:OrderId

m m o m o

v1:TransactionDetails/
v1:MerchantTransactionId

o o o o o

v1:TransactionDetails/
v1:Ip

 o o

v1:TransactionDetails/
v1:ReferenceNumber

v1:TransactionDetails/
v1:Tdate

 a

v1:TransactionDetails/
v1:ReferencedMerchantTransactionId

 b

v1:TransactionDetails/
v1:TransactionOrigin

 d

v1:TransactionDetails/
v1:InvoiceNumber

 o o

v1:TransactionDetails/
v1:PONumber

 o o

v1:TransactionDetails/
v1:DynamicMerchantName

 o o

v1:TransactionDetails/
v1:Comments

o o o o o

v1:Billing/
v1:CustomerID

 o o

v1:Billing/
v1:Name

 o o

v1:Billing/
v1:Company

 o o

v1:Billing/
v1:Address1

 o o

v1:Billing/
v1:Address2

 o o

v1:Billing/
v1:City

 o o

v1:Billing/
v1:State

 o o

v1:Billing/
v1:Zip

 o o

v1:Billing/
v1:Country

 o o

v1:Billing/
v1:Phone

 o o

v1:Billing/
v1:Fax

 o o

v1:Billing/
v1:Email

 m o

v1:Shipping/
v1:Type

 o

v1:Shipping/
v1:Name

 o

v1:Shipping/
v1:Address1

 o

v1:Shipping/
v1:Address2

 o

v1:Shipping/
v1:City

 o

v1:Shipping/
v1:State

 o

v1:Shipping/
v1:Zip

 o

v1:Shipping/
v1:Country

 o

v1:Basket/
v1:Item/
v1:ID

 o

v1:Basket/
v1:Item/
v1:Description

 o

v1:Basket/
v1:Item/
v1:SubTotal

v1:Basket/
v1:Item/
v1:ValueAddedTax

v1:Basket/
v1:Item/
v1:DeliveryAmount

v1:Basket/
v1:Item/
v1:ChargeTotal

 o

v1:Basket/
v1:Item/
v1:Currency

v1:Basket/
v1:Item/
v1:Quantity

 o

v1:Basket/
v1:Item/
v1:Option/
v1:Name

 o

v1:Basket/
v1:Item/
v1:Choice

 o

v1:TopUpTxType/
v1:MPCharge/
v1:MNSP

 m

v1:TopUpTxType/
v1:MPCharge/
v1:MSISDN

 m

v1:TopUpTxType/
v1:MPCharge/
v1:PaymentType

 m

v1:ClientLocale/
v1:Language

d d d d d

v1:ClientLocale/
v1:Country

d d d d d

12.2 Description of the XML-Tags

 CreditCardTxType

Path/Name XML
Schema
type

Description

v1:CreditCardTxType/
v1:Type

xs:string Stores the transaction type. Possible
values are sale, forceTicket, preAuth,
postAuth, return, credit and void.

 CreditCardData

Path/Name XML
Schema
type

Description

v1:CreditCardData/
v1:CardNumber

xs:string Stores the customer’s credit card number.
Make sure that the string contains only
digits, i.e. passing the number e.g. in the
format xxxx-xxxx-xxxx-xxxx will result in an
error returned by the Web Service API.

v1:CreditCardData/
v1:ExpMonth

xs:string Stores the expiration month of the
customer’s credit card. Make sure that the
content of this element always contains two
digits, i.e. a card expiring in July will have
this element with value 07.

v1:CreditCardData/
v1:ExpYear

xs:string Stores the expiration year of the
customer’s credit card. The same
formatting restrictions as for the
v1:ExpMonth element apply here.

v1:CreditCardData/
v1:CardCodeValue

xs:string Stores the three or four digit card security
code (CSC) – sometimes also referred to
as card verification value (CVV) or code
(CVC) – which is typically printed on the
back of the credit card. For information
about the benefits of CSC contact support.

v1:CreditCardData/
v1:TrackData

xs:string Stores the track data of a card when using
a card reader instead of keying in card data
(can optionally be used instead of
transmitting CardNumber, ExpMonth and

ExpYear). This field needs to contain at
least the concatenated track 1 and 2 data.
Track data 3 is optional. The track data
must include the track and field separators
as they are stored on the card. Example for
the track data separator from track data 1
and 2 without the data: %…?;…?

v1:CreditCardData/
v1:TrackData

xs:string Optional field for the brand of the credit
card. If this field is set, the transaction will
only be processed if the card number
matches the brand.

For XML-tags related to Card Present transactions with a chip reader and PIN entry device please refer
to the xsd’s in the Appendix of this document.

 recurringType

Path/Name XML Schema
type

Description

v1:recurringType xs:string This field allows you to flag transactions as
recurring. It can be set to FIRST for the first
transaction of a series and to REPEAT for
the subsequent transactions in a series.

 UnscheduledCredentialOnFileType

Path/Name XML Schema
type

Description

v1:
UnscheduledCredentialOnFileType

xs:string This field allows you to flag transactions as
Unscheduled Credential On File Type.
Currently the valid values are FIRST,

CARDHOLDER_INITIATED or
MERCHANT_INITIATED to advise the
scenario if the credential is stored on your
side.

 Wallet

Path/Name XML Schema
type

Description

v1:Wallet/
v1:WalletType

xs:string This field allows you to submit the wallet
type for transactions that have been
initiated through a digital wallet. Currently
the valid values are MASTERPASS,
APPLE_PAY, ANDROID_PAY

v1:Wallet/
v1:WalletID

xs:string This field allows you to submit the wallet ID
for transactions that have been initiated
through a digital wallet.

 cardFunction

Path/Name XML Schema
type

Description

v1:cardFunction/
v1:Type

xs:string This field allows you to indicate the card
function in case of combo cards which
provide credit and debit functionality on the
same card. It can be set to credit or debit.

 CreditCard3DSecure

Path/Name XML Schema
type

Description

v1:CreditCard3DSecure/
v1:VerificationResponse

xs:string Stores the VerificationResponse (VERes) of
your Merchant Plug-in.

v1:CreditCard3DSecure/
v1:PayerAuthenticationResponse

xs:string Stores the PayerAuthenticationResponse
(PARes) of your Merchant Plug-in.

v1:CreditCard3DSecure/
v1:DSRPECI

xs:string To set ECI value for Digital Secure Remote
Payments. If you submit this parameter,
any values for parameters
VerificationResponse and
PayerAuthenticationResponse will be
ignored.

v1:CreditCard3DSecure/
v1:AuthenticationValue

xs:string Stores the AuthenticationValue
(MasterCard: AAV or VISA: CAAV) of your
Merchant Plug-in.

v1:CreditCard3DSecure/
v1:XID

xs:string Stores the XID of your Merchant Plug-in.

v1:CreditCard3DSecure/
v1:AuthenticateTransaction

xs:boolean Indicates, if transaction is going to be
authenticated as 3DSecure transaction.If a
card is enrolled, the response will contain
the Verification Redirect Response element

v1:CreditCard3DSecure/
v1:Override3dsCountryExclusion

xs:boolean Set true, if for this transaction you would
like to enforce 3-D Secure authentication,
despite this country possibly being
exempted from authentication due to the

merchant configured list of countries where
3-D Secure is not required.

v1:CreditCard3DSecure/
v1:SkipTRA

xs:boolean Set to true, if for this transaction you would
enforce 3-D Secure authentication, despite
of the result of Transaction Risk Analysis
performed by RiskShield

Please note that these are values you receive from your own Merchant Plug-in for 3D Secure or a
solution of a 3D Secure provider. The integrated 3D Secure functionality of the Connect feature can
not be used for transactions via the API for technical reasons.

 3DSecure Authentication / Verification Redirect Response

Path/Name XML Schema

type
Description

v1:VerificationRedirectResponse
v1:AcsURL

xs:string Represents the target of the 3D Secure
redirection

v1:VerificationRedirectResponse
v1:PaReq

xs:string Represents the PAReq data which has to
be sent in the "PAReq" attribute to the ACS
URL.

v1: VerificationRedirectResponse/
v1:TermUrl

xs:string Represents the default TermURL, which
should be used in order to process the
response from the 3D Secure process.
In case that a merchant would like to parse
the response by himself, he has to specify
the "TermUrl" parameter in the form with his
custom URL, in which he will process the
response and call the API with the
response PARes and Merchant Data.

v1: VerificationRedirectResponse/
v1:MD

xs:string Represents the merchant data which has to
be sent in the "MD" attribute to the ACS
URL.

 3DSecure Authentication / ACS Response

Path/Name XML Schema

type
Description

v1:AcsResponse
v1:MD

xs:string Merchant Data from ACS redirection POST
attribute ("MD"attribute). Please note, that
this element might not be sent back by the
issuer (ACS) in case of EMV 3DS protocol
(3DS 2.0)

v1:AcsResponse
v1:PaRes

xs:string Represents PARes data from ACS
redirection POST attribute ("PARes"
attribute).

PayPalTxType

Path/Name XML
Schema
type

Description

v1:PayPalTxType/
v1:Type

xs:string Stores the transaction type. Possible
values are postAuth, return, credit and void.

Payment

Path/Name XML Schema
type

Description

v1:Payment/
v1:HostedDataID

xs:string Stores the Hosted Data ID for the Data
Vault product

v1:Payment/
v1:HostedDataStoreID

xs:string Stores the Hosted Data ID for the Data
Vault product in this store (only as
technical user)

v1:Payment/
v1:DeclineHostedDataDuplicates

xs:string Declines duplicate credit card

v1:Payment/
v1:numberOfInstallments

xs:string Stores the number of instalments for a
Sale transaction if the customer pays
the amount in several parts

v1:Payment/
v1:installmentsInterest

xs:string Indicates, if the installment interest
has been applied; possible values
"yes" or "no"

v1:Payment/
v1:installmentDelayMonths

xs:string Represents the number of months the
first payment will be delayed; possible
values in the range
 <1; 99>

v1:Payment/
v1:SubTotal

xs:decimal Stores the Sub Total of an order. If this
member is set, then also ChargeTotal
has to be set.

v1:Payment/
v1:ValueAddedTax

xs:decimal Stores the VAT of an order. If this
member is set, then also SubTotal has
to be set.

v1:Payment/
v1:DeliveryAmount

xs:decimal Stores the delivery amount of an order.
If this member is set, then also
SubTotal has to be set.

v1:Payment/
v1:ChargeTotal

xs:double Stores the transaction amount. Make
sure that the number of positions after
the decimal point does not exceed 2,
e.g. 3.123 would be invalid – however,
3.12, 3.1, and 3 are correct.

v1:Payment/
v1:Currency

xs:string Stores the currency as a three-digit
ISO 4217 value (e. g. 978 for Euro)

TransactionDetails

Path/Name XML Schema
type

Description

v1:TransactionDetails/
v1:OrderId

xs:string Stores the order ID. This must be unique per
Store ID. If no Order ID is transmitted, the
Gateway will generate one automatically.
Note: For cases where you plan to use EMV
3DS Authentication prior to the
authoriazation, please use only the following
characters in OrderId:
A-Z, a-z, 0-9, ‘-‘

v1:TransactionDetails/
v1:MerchantTransactionId

xs:string Allows you to assign a unique ID for the
transaction. This ID can be used to
reference to this transactions in a Void

request
(ReferencedMerchantTransactionId) or to
retrieve transaction details with the API
action InquiryTransaction. Uniqueness
needs to be enforced by the merchant.

v1:TransactionDetails/
v1:Ip

xs:string Stores the customer’s IP address which can
be used by the Web Service API for fraud
detection by IP address. Make sure that you
supply the IP in the format xxx.xxx.xxx.xxx,
e.g. 128.0.10.2 would be a valid IP.

v1:TransactionDetails/
v1:ReferenceNumber

xs:string Stores the six digit reference number you
have received as the result of a successful
external authorization (e.g. by phone). The
Gateway needs this number for uniquely
mapping a ForceTicket transaction to a
previously performed external authorization.

v1:TransactionDetails/
v1:PurchaseCard

xs:string Stores the purchasing card Level II and
Level III transaction data.

v1:TransactionDetails/
v1:TDate

xs:string Stores the TDate of the Sale, PostAuth,
ForceTicket, Return, or Credit transaction
this Void transaction refers to. A TDate value
is returned within the response to a
successful transaction of one of these five
types. When performing a Void transaction,
you have to pass the TDate in addition to the
order ID for uniquely identifying the
transaction to be voided. The scenario
presented below gives an example.

v1:TransactionDetails/
v1:ReferencedMerchantTransactio
nId

xs:string Stores the MerchantTransactionId of the
Sale, PostAuth, ForceTicket, Return, or
Credit transaction this Void transaction
refers to. This can be used as an alternative
to TDate if you assigne a
MerchantTransactionId in the original
transaction request.

v1:TransactionDetails/
v1:TransactionOrigin

xs:string The source of the transaction. The possible
values are ECI (if the order was received via
email or Internet), MOTO (mail order /
telephone order), MAIL (mail order),
PHONE (telephone order) and RETAIL (face
to face).

v1:TransactionDetails/
v1:SplitShipment/
v1:SequenceCount

xs:int Stores the total number of shipments in
case of split shipment. Can either be
included in the PreAuth or the first
PostAuth. A different value in the first
PostAuth overwrites the value from the
PreAuth.

v1:TransactionDetails/
v1:SplitShipment/
v1:FinalShipment

xs:boolean Needs to be set to “true” in the final PostAuth
of a series of split shipments.

v1:TransactionDetails/
v1:InvoiceNumber

xs:string Stores the invoice number.

v1:TransactionDetails/
v1:PONumber

xs:string Stores the purchase order number.

v1:TransactionDetails/
v1:DynamicMerchantName

xs:string Stores a dynamic merchant name for the
cardholder’s statement

v1:TransactionDetails/
v1:Comments

xs:string Stores the comments.

v1:TransactionDetails/
v1:SCAExemptionIndicators

xs:string Indicates the reason to skip Strong
Customer Authentication (SCA), e.g. 3-D
Secure with submitting directly an
authorization request. For available values
and more details see the chapter 13.2.30

v1:TransactionDetails/
v1:HighRiskPurchaseIndicator

xs:boolean Needs to be set to ‘true’, for transactions
handling a cryptocurrency and initiated from
a MCC 6051(Quasi Cash—Merchant) store;
or for transactions handling high risk
securities initiated from the store with MCC
6211 (Securities—Brokers/ Dealers).

v1:TransactionDetails/
v1:vmid

xs:string 8 characters Visa Merchant Identifier
assigned by Visa, required for Trusted
Merchant and Delegated Authentication.
Can be used only if you are enrolled with
Visa’s Delegated Authentication program.

Purchasing Cards

Path/Name XML Schema
type

Description

v1:PurchaseCard
v1:CustomerReferenceID

xs:string
(20max)

A reference to a Customer Code/Customer
Reference ID

v1:PurchaseCard
v1:SupplierInvoiceNumber

xs:string
(30max)

A reference to a Purchase
Identifier/Merchant related data.

v1:PurchaseCard
v1:SupplierVATRegistrationNumber

xs:string
(30max)

Represents a Merchant VAT
registration/Single Business Reference
Number/Merchant Tax ID or Corporation
VAT Number

v1:PurchaseCard
v1:TotalDiscountAmountAndRate

xs:string

Represents the total discount
amount applied to a transaction (i.e. total
transaction percentage discounts,
fixed transaction amount reductions or
summarization of line item discounts).

v1:PurchaseCard
v1:VATShippingAmountAndRate

xs:string

Represents the total
freight/shipping amount applied to a
transaction.

v1:PurchaseCard
v1:LineItemData

xs:string

Represents mandatory data for Level III
transactions.

Purchasing Cards / Line Item Data

Path/Name XML Schema
type

Description

v1:LineItemData
v1:CommodityCode

xs:numeric
(positive,
4max)

A reference to a commodity code used to
classify purchased item

v1:LineItemData
v1:ProductCode

xs:string
(20max)

A reference to a merchant product identifier,
the Universal Product Code (UPC) of
purchased item

v1:LineItemData
v1:Description

xs:string
(30max)

Represents a description of purchased item

v1:LineItemData
v1:Quantity

xs:numeric
(minInclusive
value="1")

Represents a quantity of purchased items.

v1:LineItemData
v1:UnitOfMeasure

xs:string
(3 max)

Represents a unit of measure of purchased
items

v1:LineItemData
v1:UnitPrice

xs:decimal

Represents mandatory data for Level III
transactions.

v1:LineItemData
v1:VATAmountAndRate

xs:decimal

Represents a rate of the VAT amount, e.g.
0.09 (means 9%)

v1:LineItemData
v1:DiscountAmountAndRate

xs:decimal

Represents a rate of the discount amount,
e.g. 0.09 (means 9%)

v1:LineItemData
v1:LineItemTotal

xs:decimal

This field is a calculation of the unit cost
multiplied by the quantity and less the
discount per line item. The calculation is
reflected as: [Unit Cost * Quantity] - Discount
per Line Item = Line Item Total.

InquiryRateReference

Path/Name XML Schema
type

Description

v1:InquiryRateReference/
v1:InquiryRateId

xs:long A reference to a rate-inquiry for transactions
with Global Choice™or Dynamic Pricing.

v1:InquiryRateReference/
v1:DccApplied

xs:boolean Specifies whether a cardholder has choosen
to accept the proposed currency conversion
offering when using Global Choice™.

Billing

Path/Name XML Schema
type

Description

v1:Billing/
v1:CustomerID

xs:string Stores your ID for your customer.

v1:Billing/
v1:Name

xs:string Stores the customer’s name. If provided, it
will appear on your transaction reports.

v1:Billing/
v1:Company

xs:string Stores the customer’s company. If
provided, it will appear on your transaction
reports.

v1:Billing/
v1:Address1

xs:string Stores the first line of the customer’s
address. If provided, it will appear on your
transaction reports.

v1:Billing/
v1:Address2

xs:string Stores the second line of the customer’s
address. If provided, it will appear on your
transaction reports.

v1:Billing/
v1:City

xs:string Stores the customer’s city. If provided, it
will appear on your transaction reports.

v1:Billing/
v1:State

xs:string Stores the customer’s state. If provided, it
will appear on your transaction reports.

v1:Billing/
v1:Zip

xs:string Stores the customer’s zip code. If provided,
it will appear on your transaction reports.

v1:Billing/
v1:Country

xs:string Stores the customer’s country. If provided,
it will appear on your transaction reports.

v1:Billing/
v1:Phone

xs:string Stores the customer’s phone number. If
provided, it will appear on your transaction
reports.

v1:Billing/
v1:Fax

xs:string Stores the customer’s fax number. If
provided, it will appear on your transaction
reports.

v1:Billing/
v1:Email

xs:string Stores the customer’s Email address. If
provided, it will appear on your transaction
reports. If you are using the email
transaction notification feature, this email
address will be used for notifications to
your customer.

Shipping

Path/Name XML Schema
type

Description

v1:Shipping/
v1:Name

xs:string Stores the name of the recipient. If
provided, it will appear on your transaction
reports.

v1:Shipping/
v1:Address1

xs:string Stores the first line of the shipping address.
If provided, it will appear on your
transaction reports.

v1:Shipping/
v1:Address2

xs:string Stores the second line of the shipping
address. If provided, it will appear on your
transaction reports.

v1:Shipping/
v1:City

xs:string Stores the recipient’s city. If provided, it will
appear on your transaction reports.

v1:Shipping/
v1:State

xs:string Stores the recipient’s state. If provided, it
will appear on your transaction reports.

v1:Shipping/
v1:Zip

xs:string Stores the recipient’s zip code. If provided,
it will appear on your transaction reports.

v1:Shipping/
v1:Country

xs:string Stores the recipient’s country. If provided, it
will appear on your transaction reports.

ClientLocale

Path/Name XML Schema
type

Description

v1:ClientLocale/
v1:Language

xs:string If you are using the email transaction
notification feature, this language will be
used for notifications to your customer.
Possible values are: de, en, it.

v1:ClientLocale/
v1:Country

xs:string Specifies the variant of the language. This
member can only be set if the language is
set. Possible values are: DE, GB, IT. If you do
not define a country, a matching country will
be chosen.

If you do not submit language information in the transaction, the language settings of your store will be
used for the email notifications.

RequestCardRateForDCC

Path/Name XML Schema
type

Description

v1:RequestCardRateForDCC/
v1:StoreId

xs:string
(max 20)

Your Store ID. The base currency is derived
from the Store settings.

v1:RequestCardRateForDCC/
v1:BIN

xs:int

The credit cards’ Bank Identifier Number
(first 6 digits of credit card number)

v1:RequestCardRateForDCC/
v1:BaseAmount

xs:decimal

The amount to be converted (optional).
When no amount is given in the request, no
amount will be returned, only the conversion
rate.

RequestMerchantRateForDynamicPricing

Path/Name XML Schema
type

Description

v1:RequestCardRateForDCC/
v1:StoreId

xs:string
(max 20)

Your Store ID. The base currency is derived
from the Store settings.

v1:RequestCardRateForDCC/
v1:ForeignCurrency

xs:string

The currency to be converted to. (ISO_4217
format)

v1:RequestCardRateForDCC/
v1:BaseAmount

xs:decimal

The amount to be converted (optional).
When no amount is given in the request, no
amount will be returned, only the conversion
rate.

CardRateForDCC and MerchantRateForDynamicPricing

Both elements are of the same xml-type InquiryRateType, therefore their substructure is exactly the
same and described only once.

Path/Name XML Schema

type
Description

<InquiryRateType>/
v1: InquiryRateId

xs:long The Store ID. The base currency is derived
from the Store’s settings.

<InquiryRateType>/
v1:ForeignCurrencyCode

xs:string

The currency that the amount has been
converted to (ISO_4217 format)

<InquiryRateType>/
v1:ForeignAmount

xs:decimal

The converted amount.

<InquiryRateType>/
v1:ExchangeRate

xs:decimal

The exchange rate of the currency
conversion

<InquiryRateType>/
v1:DccApplied

xs:boolean Whether the user accepted the DCC
offering or not.

<InquiryRateType>/
v1:DccOffered

xs:boolean Whether an offering for dynamic currency
conversion was extended

<InquiryRateType>/
v1:ExpirationTimestamp

xs:dateTime Timestamp after which this DCC offering
expires

<InquiryRateType>/
v1:MarginRatePercentage

xs:decimal Optional margin information.

<InquiryRateType>/
v1:ExchangeRateSourceName

xs:string

The source of the currency conversion.

<InquiryRateType>/
v1:ExchangeRateSourceSourceTi
mestamp

xs:dateTime The timestamp when the source has done
the currency conversion

Note:Instead of <InquiryRateType> substitute either CardRateForDCC or
MerchantRateForDynamicPricing

MCC 6012 Visa and Mastercard Mandate

For UK-based Financial Institutions with Merchant Category Code 6012, Visa and Mastercard have
mandated additional information of the primary recipient of the loan to be included in the authorization
message.
If you are a UK 6012 merchant use the following parameters for your transaction request:

Path/Name XML Schema

type
Description

v1:MCC6012Details/
v1:BirthDate

xs:string Date of birth in format YYYYMMDD

v1:MCC6012Details/
v1:AccountFirst6

xs:string

First 6 digits of recipient PAN (where the
primary recipient account is a card)

v1:MCC6012Details/
v1:AccountLast4

xs:string

Last 4 digits of recipient PAN (where the
primary recipient account is a card)

v1:MCC6012Details/
v1:AccountNumber

xs:string
(max 50)

Recipient account number (where the
primary recipient account is not a card)

v1:MCC6012Details/
v1:PostCode

xs:string
(max 50)

Post Code

v1:MCC6012Details/
v1:Surname

xs:string
(max 100)

Surname

If you are a UK merchant with Merchant Category Code 6051 and 7299, you can optionally use the
same MCC6012 parameters in your request for debt repayment transactions.

Market Segment Addendum

Card transactions in specific market segments can obtain incentive rates when they include
addendum data.
The Web Service API allows you to submit addendum data for the following industries:

Airlines
(MCC 3000-3299 or 4511)

v1:AirlineDetails, v1: TravelRoute

Car Rental
(MCC 3351-3500, 7512, 7513 or 7519

v1:CarRental

Hotel Lodgings
(MCC 3501-3999 or 7011)

v1:HotelLodgings

Please see v1.xsd for details (link in Appendix).

SCA Exemptions

Following PSD2 mandate requirements you are able to request an exemption from Strong Customer
Authentication (SCA) with including one of the available SCAExemptionIndicators in your transaction
request to the Gateway.

v1:SCAExemptionIndicator/
Low Value Exemption

Used for transaction amounts below 30 EUR or
respective value in other European currencies.

v1:SCAExemptionIndicator/
Trusted Merchant Exemption

Used for cases where merchant has been flagged as
trusted by their customers.

Note: PSD2 mandate is only applicable for European distribution channels.

13 Custom Parameters

13

You can send up to ten additional parameters as individual key-value pairs. The values will be stored
so that they can be returned in Inquiry Actions and be visible in the Virtual Terminal’s Order Details view.

Please refer to the element AdditionalRequestParamaters in the XSD.

14 Building a SOAP Request Message

After building your transaction in XML, a SOAP request message describing the Web Service operation
call, you wish to perform, has to be created. That means while the XML-encoded transaction you have
established as described in the previous chapter represents the operation argument, the SOAP request
message encodes the actual operation call.
Building such a SOAP request message is a rather straightforward task. The complete SOAP message
wrapping the XML-Sale-transaction looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header />

 <SOAP-ENV:Body>

 <ipgapi:IPGApiOrderRequest

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1"

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <v1:Transaction>

 <v1:CreditCardTxType>

 <v1:Type>sale</v1:Type>

 </v1:CreditCardTxType>

 <v1:CreditCardData>

 <v1:CardNumber>

 4111********1111

 </v1:CardNumber>

 <v1:ExpMonth>12</v1:ExpMonth>

 <v1:ExpYear>07</v1:ExpYear>

 </v1:CreditCardData>

 <v1:Payment>

 <v1:ChargeTotal>19.00</v1:ChargeTotal>

 <v1:Currency>978</v1:Currency>

 </v1:Payment>

 </v1:Transaction>

 </ipgapi:IPGApiOrderRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In short, the SOAP request message contains a SOAP envelope consisting of a header and a body.
While no specific header entries are required for calling the Web Service, the SOAP body takes the
transaction XML document as sub element as shown above. Note that there are no further requirements
for transactions of a type other than Sale. That means the general format of the SOAP request message
regardless of the actual transaction type is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header />

 <SOAP-ENV:Body>

 <ipgapi:IPGApiOrderRequest

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi"

 xmlns:v1="http://ipg-online.com/ipgapi/schemas/v1">

 <v1:Transaction>

 <!-- transaction content -->

 </v1:Transaction>

 </ipgapi:IPGApiOrderRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Finally, you may have noticed that there are no specific entries describing which Web Service operation
to call. In fact, the First Data Gateway automatically maps the
ipgapi:IPGApiOrderRequest element to the corresponding Web Service operation.

15 Reading the SOAP Response Message

The SOAP response message may be understood as the Web Service operation result. Hence,
processing the SOAP request message may have either resulted in a SOAP response message in the
success case (i.e. the return parameter) or a SOAP fault message in case of a failure (i.e. the thrown
exception). Both SOAP message types are contained in the body of the HTTP response message.

15.1 SOAP Response Message

A SOAP response message is received as the result to the credit card processor (started by the First
Data gateway) having approved your transaction. It always has the following scheme:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header />

 <SOAP-ENV:Body>

 <ipgapi:IPGApiOrderResponse

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <!-- transaction result -->

 </ipgapi:IPGApiOrderResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If you have send an Action, you get an ipgapi:IPGApiActionResponse.

Again, no headers are defined. The SOAP body contains the actual transaction result contained in the
ipgapi:IPGApiOrderResponse or ipgapi:IPGApiOrderRequest element. Its sub elements and their
meanings are presented in the next chapter. However, in order to provide a quick example, an approved
Sale transaction is wrapped in a SOAP message similar to the following example:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header />

 <SOAP-ENV:Body>

 <ipgapi:IPGApiOrderResponse

 xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <ipgapi:CommercialServiceProvider>

 BNLP

 </ipgapi:CommercialServiceProvider>

 <ipgapi:TransactionTime>

 1192111687392

 </ipgapi:TransactionTime>

 <ipgapi:ProcessorReferenceNumber>

 3105

 </ipgapi:ProcessorReferenceNumber>

 <ipgapi:ProcessorResponseMessage>

 Function performed error-free

 </ipgapi:ProcessorResponseMessage>

 <ipgapi:ErrorMessage />

 <ipgapi:OrderId>

 62e3b5df-2911-4e89-8356-1e49302b1807

 </ipgapi:OrderId>

 <ipgapi:ApprovalCode>

 Y:440368:0000057177:PPXM:0043364291

 </ipgapi:ApprovalCode>

 <ipgapi:AVSResponse>PPX</ipgapi:AVSResponse>

 <ipgapi:TDate>1192140473</ipgapi:TDate>

 <ipgapi:TransactionResult>

 APPROVED

 </ipgapi:TransactionResult>

 <ipgapi:TerminalID>123456</ipgapi:TerminalID>

 <ipgapi:ProcessorResponseCode>

00

</ipgapi:ProcessorResponseCode>

<ipgapi:ProcessorApprovalCode>

440368

</ipgapi:ProcessorApprovalCode>

<ipgapi:ProcessorReceiptNumber>

4291

</ipgapi:ProcessorReceiptNumber>

<ipgapi:ProcessorTraceNumber>

004336

</ipgapi:ProcessorTraceNumber>

 </ipgapi:IPGApiOrderResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

15.2 SOAP Fault Message

In general, a SOAP fault message returned by the Web Service API has the following format:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header />

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode>SOAP-ENV:Client</faultcode>

 <faultstring xml:lang="en-US">

 <!-- fault message -->

 </faultstring>

 <detail>

 <!-- fault message -->

 </detail>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Basically, the faultstring element carries the fault type. According to the fault type, the other elements
are set. Note that not all of the above shown elements have to occur within the SOAP-ENV:Fault
element. Which elements exist for which fault type is described in the upcoming sections.

15.3 SOAP-ENV:Server

In general, this fault type indicates that the Web Service has failed to process your transaction due to
an internal system error. If you receive this as response, please contact our support team to resolve
the problem.

An InternalException always looks like the example below:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header />

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode>SOAP-ENV:Server</faultcode>

 <faultstring xml:lang="en-US">

 unexpected error

 </faultstring>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAP fault message elements – relative to the SOAP-ENV:Envelope/SOAP-ENV:Body/SOAP-
ENV:Fault element – are set as follows:

Path/Name XML Schema type Description
faultcode xs:string This element is always set to

SOAP-ENV:Server, indicating
that the fault cause is due to
the system underlying the API
having failed.

faultstring xs:string This element always carries
the following fault string:
unexpected error

15.4 SOAP-ENV:Client

 MerchantException

This fault type occurs if the Gateway can trace back the error to your store having passed incorrect
information. This may have one of the following reasons:

1. Your store is registered as being closed. In case you will receive this information despite your
store being registered as open, please contact support.

2. The store ID / user ID combination you have provided for HTTPS authorization is syntactically
incorrect.

3. The XML does not match the schema.

A MerchantException always looks as shown below:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header />

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode>SOAP-ENV:Client</faultcode>

 <faultstring xml:lang="en-US">

MerchantException

</faultstring>

 <detail>

 <!-- detailed explanation. -->

 </detail>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAP fault message elements – relative to the SOAP-ENV:Envelope/SOAP-ENV:Body/SOAP-
ENV:Fault element – are set as follows:

Path/Name XML Schema type Description

faultcode xs:string This element is always set to
SOAP-ENV:Client

faultstring xs:string
This element is always set to

MerchantException

detail/reason xs:string
Minimum one reason

See section Merchant Exceptions in the Appendix for detailed analysis of errors.

 ProcessingException

A fault of this type is raised whenever the Gateway has detected an error while processing your
transaction. The difference to the other fault types is that the transaction passed the check against the
xsd.

A ProcessingException always looks as shown below:
<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header />

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode>SOAP-ENV:Client</faultcode>

 <faultstring xml:lang="en-US">

 ProcessingException: Processing the request

 resulted in an error - see SOAP details for more

 information

 </faultstring>

 <detail>

 <ipgapi:IPGApiOrderResponse

 xmlns:ipgapi="https://ipg-online.com/ipgapi/schemes/ipgapi">

 <ipgapi:CommercialServiceProvider>

 BNLP

 </ipgapi:CommercialServiceProvider>

 <ipgapi:TransactionTime>

 1192111156423

 </ipgapi:TransactionTime>

 <ipgapi:ProcessorReferenceNumber />

 <ipgapi:ProcessorResponseMessage>

 Card expiry date exceeded

 </ipgapi:ProcessorResponseMessage>

 <ipgapi:ErrorMessage>

 SGS-000033: Card expiry date exceeded

 </ipgapi:ErrorMessage>

 <ipgapi:OrderId>

 62e3b5df-2911-4e89-8356-1e49302b1807

 </ipgapi:OrderId>

 <ipgapi:ApprovalCode />

 <ipgapi:AVSResponse />

 <ipgapi:TDate>1192139943</ipgapi:TDate>

 <ipgapi:TransactionResult>

 FAILED

 </ipgapi:TransactionResult>

 <ipgapi:TerminalID>123456</ipgapi:TerminalID>

 <ipgapi:ProcessorResponseCode/>

<ipgapi:ProcessorApprovalCode />

<ipgapi:ProcessorReceiptNumber />

<ipgapi:ProcessorTraceNumber />

 </ipgapi:IPGApiOrderResponse>

 </detail>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAP fault message elements – relative to the SOAP-ENV:Envelope/SOAP-ENV:Body/SOAP-
ENV:Fault element – are set as described below.

Path/Name XML Schema type Description
faultcode xs:string This element is always set to

SOAP-ENV:Client, indicating
that the fault cause is likely to
be found in invalid transaction
data having been passed.

faultstring xs:string This element always carries
the following fault string:
ProcessingException

detail/
ipgapi:IPGApiOrderResponse

Composite element This element contains the
error. Since there are
numerous causes for raising
such an exception, the next
chapter will give an overview
by explaining the data
contained in this element.

See section Processing Exceptions in the Appendix for detailed analysis of errors.

16 Analysing the Transaction Result

16.1 Transaction Approval

The SOAP message wrapping a transaction approval has been presented in the previous chapter
together with an example. The transaction status report generated by the Gateway is contained in the
ipgapi:IPGApiOrderResponse element and can be understood as the data returned by the Web Service
operation. In the following, its elements – relative to the ipgapi:IPGApiOrderResponse super element –
are described. Note that always the full set of elements is contained in the response – however, some
elements might be empty.

Path/Name XML Schema type Description
ipgapi:
CommercialServiceProvider

xs:string Indicates your provider.

ipgapi:TransactionTime xs:string The time stamp which is set by the
Gateway before returning the
transaction approval.

ipgapi:
ProcessorReferenceNumber

xs:string In some cases, this element might be
empty. It stores a number allowing the
credit card processor to refer to this
transaction. You do not need to
provide this number in any further
transaction. However, have that
number ready, in case you detect any
problems with your transaction and
you want to contact support.

ipgapi:
ProcessorResponseMessage

xs:string In case of an approval, this element
contains either contains the response
message provided by the
authorisation system (e.g. an auth

code) or in case there is no such
message, the string:

Function performed error-free
ipgapi:
ProcessorResponseCode

xs:string The response code from the credit
card processor

ipgapi:ErrorMessage xs:string This element is empty in case of an
approval.

ipgapi:OrderId xs:string This element contains the order ID.
For Sale, PreAuth, ForceTicket, and
Credit transactions, a new order ID is
returned. For PostAuth, Return, and
Void transactions, supply this number
in the v1:OrderId element for making
clear to which transaction you refer.
The ipgapi:OrderId element of a
transaction approval to a PostAuth,
Return, or Void transaction simply
returns the order ID, such a
transaction has referred to.

ipgapi:ApprovalCode xs:string Stores the approval code the
transaction processor has created for
this transaction. You do not need to
provide this code in any further
transaction. However, have that
number ready, in case you detect any
problems with your transaction and
you want to contact support.

ipgapi:AVSResponse xs:string Returns the address verification
system (AVS) response.

ipgapi:TDate xs:string Stores the TDate you have to supply
when voiding this transaction (which is
only possible for Sale and PostAuth
transactions). In this case, pass its
value in the v1:TDate element of the
Void transaction you want to build.

ipgapi:TransactionResult xs:string Stores the transaction result which is
always set to APPROVED in case of an
approval or WAITING in case the final
result is not yet clear and will be
updated at a later point.

ipgapi:TerminalID xs:string The Terminal ID used for this
transaction.

ipgapi:PaymentType xs:string The payment type used for this
transaction.

ipgapi:Brand xs:string The brand of the card used for this
transaction.

ipgapi:ConvenienceFee xs:decimal The Convenience fee value, returned
in the response if you have this feature
configured and this is applicable for
Sale transaction.

ipgapi:Country xs:string The country where the card has been
issued that has been used for this
transaction.

ipgapi:SchemeTransactionId xs:string Returned in the response by
Mastercard for stored credentials
transactions.

16.2 Transaction Failure

As shown in the previous chapter, a SOAP fault message, resulting from the credit card processor
having failed to process your transaction, contains an ipgapi:IPGApiOrderResponse element passed as
child of a SOAP detail element. Note that its sub elements are exactly the same as in the transaction
approval case. Their meaning in the failure case is described below:

Path/Name XML Schema type Description
ipgapi:
CommercialServiceProvider

xs:string Indicates your provider.

ipgapi:TransactionTime xs:string The time stamp which is set by the
Gateway before returning the
transaction failure. The format is Unix
time
(https://en.wikipedia.org/wiki/Unix_tim
e).

ipgapi:
ProcessorReferenceNumber

xs:string In some cases, this element might be
empty. Stores a number allowing the
credit card processor to refer to this
transaction. You do not need to
provide this number in any further
transactions. However, have that
number ready, in case you detect any
problems with your transaction and
you want to contact support.

ipgapi:
ProcessorResponseMessage

xs:string Stores the error message the credit
card processor has returned. For
instance, in case of an expired credit
card this might be:

Card expiry date exceeded

ipgapi:
ProcessorResponseCode

xs:string The response code from the credit
card processor

ipgapi:
ProcessorApprovalCode

xs:string The approval code from the credit card
processor

ipgapi:
ProcessorReceiptNumber

xs:string The receipt number from the credit
card processor

ipgapi:
ProcessorTraceNumber

xs:string The trace number from the credit card
processor

ipgapi:ErrorMessage xs:string Stores the error message returned by
the Gateway. It is always encoded in
the format SGS-XXXXXX: Message
with XXXXXX being a six digit error
code and Message describing the
error (this description might be
different from the processor response
message). For instance, in the above
example the error message SGS-

000033: Card expiry date exceeded is
returned. Make sure to have the error
code and message ready when
contacting support.

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

ipgapi:OrderId xs:string Stores the order ID. In contrast to an
approval, this order ID is never
required for any further transaction,
but needed for tracing the cause of the
error. Hence, make sure to have it
ready when contacting support.

ipgapi:ApprovalCode xs:string This element is empty in case of a
transaction failure.

ipgapi:AVSResponse xs:string Returns the address verification
system (AVS) response.

ipgapi:TDate xs:string Stores the TDate. Similar to the order
ID, the TDate is never required for any
further transaction, but needed for
tracing the error cause. Hence, make
sure to have it ready when contacting
support.

ipgapi:TransactionResult xs:string In the failure case, there are three
possible values:

• DECLINED

• FRAUD

• FAILED

DECLINED is returned in case the
credit card processor does not accept
the transaction, e.g. when finding the
customer’s funds not to be sufficient.
FRAUD is returned in case a fraud
attempt is assumed by the Gateway. If
an internal gateway error should
occur, the returned value is FAILED.

ipgapi:TerminalID xs:string The Terminal ID used for this
transaction.

17 Building an HTTPS POST Request

Building an HTTPS POST request is a task you rarely have to do “by hand”. There are plenty of tools
and libraries supporting you in the composition of HTTPS requests. Mostly, the required functionality for
doing this task is contained in the standard set of libraries coming with the technological environment in
which you develop your online store.
Since all of these libraries slightly differ in their usage, no general building process can be described. In
order to illustrate the basic concepts, the following chapters will give examples showing how to build a
valid HTTPS request in PHP and ASP. In general, the set of parameters you have to provide for building
a valid HTTPS request in whatever technology is as follows:

Parameter Value Description

URL https://
test.ipg-online.com/
ipgapi/services

This is the full URL of the Web Service API –
depending on the functionality you use for
building HTTP requests, you might have to
split this URL into host and service and
provide this information in the appropriate
HTTP request headers.
Please note, that only TLS secured
communication over standard HTTPS TCP
port 443 is accepted.

Content-Type text/xml This is an additional HTTP header needed to
be set. This is due to the SOAP request
message being encoded in XML and passed
as content in the HTTP POST request body.

Authorization Type: Basic
Username:

WSstoreID._.userID
Password: yourPassword

Your store is identified at the Gateway by
checking these credentials. In order to use the
Web Service API, you have to provide your
store ID, user ID, and password as the
content of an HTTP Basic authorization
header. For instance, if your store ID is 101,
your user ID 007, and your password myPW,
the authorization user name is WS101._.007.
The complete HTTP authorization header
would be:

Authorization: Basic
 V1MxMDEuXy4wMDc6bXlQVw==

Note that the latter string is the base 64
encoding result of the string
WS101._.007:myPW.

HTTP Body SOAP request XML The HTTP POST request body takes the
SOAP request message

Please note, that the Gateway is using GSLB (Global Server Load Balancing) solution to route traffic
to different locations. By default, DNS returns IP address of a primary datacenter. This may change
during planned maintenance or unplanned outage – in such case a different IP is returned, pointing to
DR (disaster recovery) location. It is therefore critical, that you respect IP address and TTL returned by
DNS. Please consider that while setting up firewalls, proxy whitelists etc.

17.1 PHP

Doing HTTP communication in PHP is mostly accomplished with the aid of cURL which is shipped both
as library and command line tool. In newer PHP versions, cURL is already included as extension which
has to be “activated”, thus making the cURL functionality available in any PHP script. While this is a
rather straightforward task in case your Web server operates on Microsoft Windows, it might require to
compile PHP on Unix/Linux machines. Therefore, you might consider to call the cURL command line
tool from your PHP script instead of using the cURL extension. Both variants are considered in the
following beginning with the usage of the cURL extension in PHP 5.2.4 running on a Windows machine.

 Using the cURL PHP Extension

Mostly, activating the cURL extension in PHP 5.2.4 simply requires to uncomment the following line in
your php.ini configuration file:

;extension=php_curl.dll

Note that other PHP versions might require other actions in order to enable cURL support in PHP. Refer
to your PHP documentation for more information. After activating cURL, an HTTP request with the above
parameters is set up with the following PHP statements:

<?php
// storing the SOAP message in a variable – note that the plain XML code
// is passed here as string for reasons of simplicity, however, it is
// certainly a good practice to build the XML e.g. with DOM – furthermore,
// when using special characters, you should make sure that the XML string
// gets UTF-8 encoded (which is not done here):
$body = "<SOAP-ENV:Envelope ...>...</SOAP-ENV:Envelope>";
// initializing cURL with the IPG API URL:

$ch = curl_init("https://test.ipg-online.com/ipgapi/services");
// setting the request type to POST:
curl_setopt($ch, CURLOPT_POST, 1);
// setting the content type:
curl_setopt($ch, CURLOPT_HTTPHEADER, array("Content-Type: text/xml"));
// setting the authorization method to BASIC:
curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);
// supplying your credentials:
curl_setopt($ch, CURLOPT_USERPWD, "WS101._.007:myPW");
// filling the request body with your SOAP message:
curl_setopt($ch, CURLOPT_POSTFIELDS, $body);
...
?>

Setting the security options which are necessary for enabling TLS communication will be discussed in
the next chapter extending the above script.

 Using the cURL Command Line Tool

For the reasons described above, you might consider using the cURL command line tool instead of the
extension. Using the tool does not require any PHP configuration efforts – your PHP script simply has
to call the executable with a set of parameters. Since the security settings are postponed to the next
chapter, the following script only shows how to set up the standard HTTP parameters, i.e. the script is
extended with the TLS parameters in the next chapter.

<?php
// storing the SOAP message in a variable – note that you have to escape
// " and \n, since the latter makes the command line tool fail,
// furthermore note that the plain XML code is passed here as string
// for reasons of simplicity, however, it is certainly a good practice
// to build the XML e.g. with DOM – finally, when using special
// characters, you should make sure that the XML string gets UTF-8 encoded
// (which is not done here):
$body = "<SOAP-ENV:Envelope ...>...</SOAP-ENV:Envelope>";
// setting the path to the cURL command line tool – adapt this path to the
// path where you have saved the cURL binaries:
$path = "C:\curl\curl.exe";
// setting the IPG API URL:
$apiUrl = " https://test.ipg-online.com/ipgapi/services";
// setting the content type:
$contentType = " --header \"Content-Type: text/xml\"";
// setting the authorization method to BASIC and supplying
// your credentials:
$user = " --basic --user WS101._.007:myPW";
// setting the request body with your SOAP message – this automatically
// marks the request as POST:
$data = " --data \"".$body."\"".
...
?>

17.2 ASP

There are multiple ways of building an HTTP request in ASP. However, in the following, the usage of
WinHTTP 5.1 is described as it ships with Windows Server 2003 and Windows XP SP2. Furthermore,
only a few lines of code are required in order to set up a valid HTTP request. Note that the following
code fragment is written in JavaScript. Using VB Script instead does not fundamentally change the
shown statements.

<%@ language="javascript"%>
<html>...<body>

<%
// storing the SOAP message in a variable – note that the plain XML code

// is passed here as string for reasons of simplicity, however, it is
// certainly a good practice to build the XML e.g. with DOM – furthermore,
// when using special characters, you should make sure that the XML string
// gets UTF-8 encoded (which is not done here):
var body = "<SOAP-ENV:Envelope ...>...</SOAP-ENV:Envelope>";
// constructing the request object:
var request = Server.createObject("WinHttp.WinHttpRequest.5.1");
// initializing the request object with the HTTP method POST
// and the IPG API URL:
request.open("POST", "https://test.ipg-online.com/ipgapi/services");
// setting the content type:
request.setRequestHeader("Content-Type", "text/xml");
// setting the credentials:
request.setCredentials("WS10036000750._.1001", "testinger", 0);
...
%>
</body></html>

Note that the above script is extended in the next chapter by setting the security options which are
required for establishing the TLS channel.

18 Establishing a TLS connection

Before sending the HTTP request built in the previous chapter, a secure communication channel has to
be established, guaranteeing both that all data is passed encrypted and that the client (your application)
and server (running the Web Service API) can be sure of communicating with each other and no one
else.
Please note, that only TLS secured communication over standard HTTPS TCP port 443 is accepted.

Both are achieved by establishing an TLS connection with the client and server exchanging certificates.
A certificate identifies a communication party uniquely. Basically, this process works as follows:

1. TLS: The client requests access to www.ipg-online.com
2. TLS: The server presents its certificate to the client
3. TLS: The client verifies the server’s certificate (optional)
4. TLS: The server asks the client for a client certificate
5. TLS: The client sends its certificate to the server
6. TLS: The server verifies the client’s credentials
7. TLS: If successful, the server establishes TLS tunnel to www.ipg-online.com and all the data

exchanged between parties is encrypted.
8. HTTP: Start HTTP and request the URL part: /ipgapi/services […]

Following this process, your application has to do two things: First, start the communication by sending
its client certificate. Second, verify the received server certificate. How this is accomplished differs from
platform to platform. However, in order to illustrate the basic concepts, the PHP and ASP scripts started
in the previous chapter will be continued by extending them with the relevant statements necessary for
setting up a TLS connection.

18.1 PHP

Picking up the distinction between using either the PHP cURL extension or the command line tool, the
following two sections will continue the two different ways of enabling secure HTTP communication.
However, regardless of which approach you intend to use, you will be confronted with one special
feature of cURL: cURL requires the client certificate to be passed as PEM file with the Client Certificate
Private Key passed in an extra file. Finally, the Client Certificate Private Key password has to be
supplied. Simply spoken, the PEM file contains the list of client certificates with all information necessary
for allowing the server to identify the client. The private key is not really necessary for this kind of
communication. However, it is crucial for making cURL work.

http://www.ipg-online.com/
http://www.ipg-online.com/
https://www.ipg-online.com/ipgapi/services

 Using the PHP cURL Extension

Building on the script started in the previous chapter, the parameters which are necessary for
establishing an TLS connection with cURL are set in the following statements:

<?php
...
// telling cURL to verify the server certificate:
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 1);
// setting the path where cURL can find the certificate to verify the
// received server certificate against:
curl_setopt($ch, CURLOPT_CAINFO, "C:\certs\tlstrust.pem");
// setting the path where cURL can find the client certificate:
curl_setopt($ch, CURLOPT_SSLCERT, "C:\certs\WS101._.007.pem");
// setting the path where cURL can find the client certificate’s
// private key:
curl_setopt($ch, CURLOPT_SSLKEY, "C:\certs\WS101._.007.key");
// setting the key password:
curl_setopt($ch, CURLOPT_SSLKEYPASSWD, "ckp_1193927132");
...
?>

Note that this script is extended in the next chapter by the statements doing the actual HTTP request.

 Using the cURL Command Line Tool

Building on the script started in the previous chapter, the statements which initialize the TLS
parameters passed to the cURL command line tool are as follows:

<?php
...
// setting the path where cURL can find the certificate to verify the
// received server certificate against:
$serverCert = " --cacert C:\certs\tlstrust.pem";
// setting the path where cURL can find the client certificate:
$clientCert = " --cert C:\certs\WS101._.007.pem";
// setting the path where cURL can find the client certificate’s
// private key:
$clientKey = " --key C:\certs\WS101._.007.key";
// setting the key password:
$keyPW = " --pass ckp_1193927132";
...
?>

Note that this script is extended in the next chapter by the statements doing the actual HTTP request.

18.2 ASP

For making the above TLS initialization process work, ASP requires both the client and the server
certificate to be present in certificate stores. In other words, before ASP can communicate via TLS, both
certificates have to be installed first. The following steps which assume ASP running on Microsoft IIS
5.1 under Windows XP, will guide you through this set up process:

1. Click Start, click Run..., type mmc and click OK.
2. Open the File menu, select Add/Remove Snap-In.
3. Click Add.
4. Under Snap-In choose Certificates and click Add.
5. You will be prompted to select the account for which you want to manage the certificates. Since

IIS uses the computer account, choose Computer Account and click Next.
6. Choose Local Computer and click Finish.
7. Click Close and then OK.
8. Expand the Certificates (Local Computer) tree - the client certificate will be installed in the

Personal folder.

9. Therefore, right click the Certificates folder, select All Tasks, click Import... – this will open the
Certificate Import Wizard.

10. Click Next. Choose your client certificate p12 file and click Next.
11. Provide the client certificate installation password and click Next.
12. Select Place all certificates in the following store and browse for the Personal folder if not yet

displayed. Click Next.
13. Check the displayed settings and click Finish. Your client certificate is now installed in the local

computer’s personal certificates store. Here, IIS (running ASP) can lookup the client certificate
when communicating with another server via HTTP.

14. Now, the server certificate has to be installed in the Trusted Root Certification Authorities store.
The certificates in this store are used for verification whenever receiving a certificate from a
server. That means the Web Service API server certificate has to be installed here. In this way,
IIS is able to verify the server certificate received when contacting the Web Service. Therefore,
choose Trusted Root Certification Authorities from the Certificates (Local Computer) tree open
the sub folder Certificates.

15. Right click the Certificates folder, select All Tasks, click Import... – this will open the Certificate
Import Wizard again.

16. Click Next. Choose the Trust Anchor PKCS#7 file and click Next.
17. Select Place all certificates in the following store and browse for the Trusted Root Certification

Authorities folder if not yet displayed. You should trust all client certificates listed to establish a
trusted connection to the server. Click Next.

18. Check the displayed settings and click Finish. The server certificate is now installed in the local
computer’s trusted certificates store. Here, IIS can lookup the server certificate for verification
against the Web Service API server certificate received during the TLS setup process.

After installing both certificates one could assume that the environment allowing ASP to communicate
via TLS is set up. However, there is still one thing which makes the communication fail: IIS – running
your ASP – has a Windows user which does not have the necessary rights to access the client certificate
private key. Although accessing the private key is not really necessary for establishing the TLS
connection to the Gateway, the IIS user needs access rights for running the authentication process in
ASP. For granting rights to a user, Microsoft provides the WinHttpCertCfg.exe tool you can download
for free under:

http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-
c748e422833f&displaylang=en

After installing the tool, open a command prompt, switch to the directory where you have installed the
tool, and type in the following line for granting access to the IIS user:

winhttpcertcfg -g -c LOCAL_MACHINE\My -s WS101._.007 -a IWAM_MyMachine

LOCAL_MACHINE\My determines the key store where the personal certificates for the local machine
account are stored. After installing the client certificate in the personal certificates store as described
above, the client certificate can be found under this path, so there is no need to provide another path.
WS101._.007 is the name of the client certificate. You have to adapt this name to the name of your
client certificate. Therefore, check the name displayed for the client certificate in the mmc console after
installing it as described above. Finally, IWAM_MyMachine denotes the IIS user name. Note that IIS 5.1
uses IWAM_MachineName by default. That means if your machine has the name IISServerMachine,

the IIS user will be called IWAM_IISServerMachine. Note that other IIS versions might use a different
naming scheme. If you do not know your machine name or IIS user name, check the IIS documentation
and contact your administrator.

Now you are ready to use TLS in your ASP code. The code extending the ASP script started in the
previous chapter is reduced to only one additional statement which tells WinHTTP which client certificate
to send (and where to find it) when contacting the First Data Gateway:

<%@ language="javascript"%>
<html>...<body>

<%
...

// setting the path where the client certificate to send can be found:
request.setClientCertificate("LOCAL_MACHINE\\My\\WS101._.007");
...
%>
</body></html>

Note that if you use VB Script, the code looks almost the same – however, do not forget to replace the
doubled backslashes in the path with single ones (i.e. the path to the certificate would be
"LOCAL_MACHINE\My\WS101._.007" instead).

Note that this script is extended in the next chapter by the statements doing the actual HTTP request.

19 Sending the HTTPS POST Request and Receiving the Response

The actual communication with the Web Service API takes place when sending the HTTPS request and
waiting for a response. Again, how this is done depends on the technology you are using. Most HTTP
libraries fully cover the underlying communication details and reduce this process to a single operation
call returning the HTTP response as result object.
In any case, the parameters which are required for successfully performing an HTTP POST request
over TLS and receiving the response (carrying a 200 HTTP status code) have been described in the
previous two chapters. Setting invalid or incorrect parameters results in the web server running the Web
Service API to return a standard HTTP error code in the HTTP header of the response or sending an
TLS failure. Their meanings can be found in any HTTP/TLS guide.
Please note, that only TLS secured communication over standard HTTPS TCP port 443 is accepted.

However, there is one important exception: In case the HTTP parameters you have provided are correct,
but the Web Service has failed to process your transaction due to an incorrect value contained in the
SOAP request message (e.g. an invalid credit card number), a SOAP exception is thrown and
transferred in the body of an HTTP response carrying the error code 500. Details about the exception
cause are provided in the SOAP fault message which is described in the context of the next chapter.

In order to complete the PHP and ASP scripts, built gradually in the previous chapters, the following two
chapters will provide the statements necessary for doing an HTTP call using these technologies.

19.1 PHP

Again, the distinction between the PHP cURL extension and the cURL command line tool is made in the
following:

 Using the PHP cURL Extension

The PHP script using the cURL extension is finally completed by doing the call with the statements
shown below. Note that the HTTP call returns a SOAP response or fault message in the HTTP response
body.

<?php
...
// telling cURL to return the HTTP response body as operation result
// value when calling curl_exec:
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
// calling cURL and saving the SOAP response message in a variable which
// contains a string like "<SOAP-ENV:Envelope ...>...</SOAP-ENV:Envelope>":
$result = curl_exec($ch);
// closing cURL:
curl_close($ch);
?>

 Using the cURL Command Line Tool

Doing the HTTP call with the cURL command line tool simply requires completing the command line
statement and executing the external tool. However, reading the HTTP response is more complicated

as the PHP exec command saves each line returned by an external program as one element of an array.
Concatenating all elements of that array results in the SOAP response or fault message which has been
returned in the HTTP response body. The following statements handle the HTTP call and complete the
script:

<?php
...
// saving the whole command in one variable:
$curl = $path.

$data.
$contentType.
$user.
$serverCert.
$clientCert.
$clientKey.
$keyPW.
$apiUrl;

// preparing the array containing the lines returned by the cURL
// command line tool:
$returnArray = array();
// performing the HTTP call by executing the cURL command line tool:
exec($curl, $returnArray);
// preparing a variable taking the complete result:
$result = "";
// concatenating the different lines returned by the cURL command
// line tool – this result in the variable $result carrying the entire
// SOAP response message as string:
foreach($returnArray as $item)

$result = $result.$item;
?>

19.2 ASP

Doing the actual HTTP call with WinHTTP in ASP is limited to one simple operation call taking the SOAP
request XML as a parameter. After successfully performing the request a SOAP response or fault
message is returned which can be retrieved as a string by accessing the request object’s responseText
property. How such a SOAP response message looks like is described in the next chapter. The following
statements complete the ASP script:

 <%@ language="javascript"%>
<html>...<body>

<%
...
// doing the HTTP call with the SOAP request message as input:
request.send(body);
// saving the SOAP response message in a string variable:
var response = request.responseText;
%>
</body></html>

20 Using a Java Client to connect to the web service

For quick and simple integration, First Data provides a Java Client to connect to the Gateway web
service. An instance of the IPGApiClient class manages the connection to the web service, builds XML
and the SOAP messages and evaluates the responses. To construct a transaction or to handle a
response, the developer works with simple Java bean classes.

The IPGApiClient uses the apache http client. Some settings of the http client impact every http client
for the same class loader environment.

20.1 Instance an IPGApiClient

There are several constructors available to instantiate the IPGApiClient. The example below illustrates
how to use the easiest one of the constructors. The getBytes method is also included for the completion
and simplification of the example.

String url = "https://test.ipg-online.com/ipgapi/services";
String storeId = "your store id";
String password = "your password";
byte[] key = getBytes("/path/to/your/keyStore.ks");
String keyPW = "your key store password";

IPGApiClient client = new IPGApiClient(url, storeId, password, key, keyPW);

/**
 * getBytes
 * reads a resource and returns a byte array
 * @param resource the resource to read
 * @return the resource as byte array
 */
public static byte[] getBytes(final String resource) throws IOException {
 final InputStream input = IO.class.getResourceAsStream(resource);
 if (input == null) {
 throw new IOException(resource);
 }
 try {
 final byte[] bytes = new byte[input.available()];
 input.read(bytes);
 return bytes;
 } finally {
 try {
 input.close();
 } catch (IOException e) {
 log.warn(resource);
 }
 }
}

20.2 How to construct a transaction and handle the response

There are different classes for transactions with the following card types:

• Credit Card

• UK Debit Cards.

The following factory class can be used to generate the class you need:

de.firstdata.ipgapi.client.transaction.IPGApiTransactionFactory
 The following example shows a Credit Card Sale transaction for an amount of 7 Euros:

Amount amount = new Amount("7", "978"); // ISO 4217: EUR = 978
CreditCard cC = new CreditCard("1111222233334444", "07", "17", null);
CCSaleTransaction transaction =
 IPGApiTransactionFactory.createSaleTransactionCredit(amount, cC);
// some transactions may include further information e.g. the customer
transaction.setName("a name");
try {
 IPGApiResult result = client.commitTransaction(transaction);
 // now you can read the conclusion
 System.out.println(result.getOrderId());
 System.out.println(result.getTransactionTime());
 // ...
} catch (ProcessingException e) {
 // ERROR: transaction not passed
}

20.3 How to construct an action

The following Factory Class can be used to generate the class you need:

de.firstdata.ipgapi.client.transaction.IPGApiActionFactory

To commit an action you need to use the commitAction method of the IPGApiClient. The further
process is similar to payment transactions.

20.4 How to connect behind a proxy

Before you use the IPGApiClient behind a proxy you must set the proxy configuration of the client with
the IPGApiClient method:

IPGApiClient.setProxy(

final String host, final Integer port,
final String user, final String password,
final String workstation, final String domain)

The parameters user, password, workstation and domain should be null if no identification needed. If
you need to identify on a MS Windows proxy you must set the parameter domain. To identify on
systems like Unix the parameter domain must be null. For more information see the apache javadoc.

After setting the proxy parameters you must call the IPGApiClient.init() method.

21 Appendix

XML

The Web Service API uses the XML standard for communication as described on

http://www.w3.org/standards/xml/core

including the specification of namespaces described on

http://www.w3.org/TR/2009/REC-xml-names-20091208/

To make the names of the XML tags unique (e.g. in IPG: IPGApiActionRequest, Action,
RecurringPayment, etc.), namespaces are used.

Example:

http://www.w3.org/standards/xml/core
http://www.w3.org/TR/2009/REC-xml-names-20091208/

http://ipg-online.com/ipgapi/schemas/ipgapi, http://ipg-online.com/ipgapi/schemas/a1, …

These namespaces are defined in the xsd files like

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi".

The same namespaces must be declared in the XML files (no parsing with hardcoded namespace
references), starting with keyword xmlns.

To aviod errors with the namespaces we recommend to use libaries to manage the XML messages.

In the course of future product develoment, it may be necessary that we extend the IPGApiRequest or
IPGApiResponse with further members. While extending the request will have no impact on your
implemented code, extending the response might cause errors if you check the response against
ipgapi.xsd. We therefore recommend to deactivate the check.

XML Schemas

The definitions for the XML document building blocks can be found here:

ipgapi.xsd https://www.ipg-online.com/ipgapi/schemas/ipgapi.xsd

v1.xsd https://www.ipg-online.com/ipgapi/schemas/v1.xsd

a1.xsd https://www.ipg-online.com/ipgapi/schemas/a1.xsd

Troubleshooting - Merchant Exceptions

<detail>
 XML is not wellformed: Premature end of message.
</detail>

Possible Explanation:
You have sent an absolutely empty message. The message contains neither a soap message nor an
IPG API message or any other characters in the http body.

<detail>
 XML is not wellformed: Content is not allowed in prolog.
</detail>

Possible Explanation:
The message can’t be interpreted as an XML message.

<detail>
 XML is not wellformed:
 XML document structures must start and end within the same entity.
</detail>

Possible Explanation:
The message starts like an XML message but the end tag of the first open tag is missing.

<detail>
 XML is not wellformed:
 The element type "SOAP-ENV:Body" must be terminated

by the matching end-tag "</SOAP-ENV:Body>".

http://ipg-online.com/ipgapi/schemas/ipgapi
http://ipg-online.com/ipgapi/schemas/a1
http://ipg-online.com/ipgapi/schemas/ipgapi
https://www.ipg-online.com/ipgapi/schemas/ipgapi.xsd
https://www.ipg-online.com/ipgapi/schemas/v1.xsd
https://www.ipg-online.com/ipgapi/schemas/a1.xsd

</detail>

Possible Explanation:
To an open internal tag (not the top level tag) the end tag is missing. In this example the end tag
</SOAP-ENV:Body> is missing.

<detail>
 XML is not wellformed:

Element type "irgend" must be followed by either attribute specifications, ">" or
"/>".

</detail>

Possible Explanation:
The message isn’t an XML message or a correct XML message. A “>” character is missing for the tag
irgend.

<detail>
 XML is not wellformed:

Open quote is expected for attribute "xmlns:ns3"
associated with an element type "ns3:IPGApiOrderRequest".

</detail>

Possible Explanation:
The value of one attribute isn’t enclosed in quotation marks. In IPG API attributes are only used for the
name spaces.

<detail>
 XML is not wellformed:
 The prefix "ipgapi" for element "ipgapi:IPGApiOrderRequest"

is not bound.
</detail>

Possible Explanation:
The name space “ipgapi” isn’t declared. To declare a name space use the xmlns prefix. In this case
you should take
xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi" as attribute in the top level tag of the IPG
API message (IPGApiOrderRequest or IPGApiActionRequest).

<detail>
 XML is not wellformed:

The prefix "xmln" for attribute "xmln:ns2" associated
with an element type "ns3:IPGApiOrderRequest" is not bound.

</detail>

Possible Explanation:
To declare an own name space, only the predefined name space xmlns allowed. In this case the prefix
is written as xmln and not as xmlns.

<detail>

XML is not wellformed:
Unable to create envelope from given source
because the namespace was not recognized

</detail>

Possible Explanation:

http://ipg-online.com/ipgapi/schemas/ipgapi

The message could be interpreted as an XML message and the enclosing soap message is correct,
but the including IPG API message in the soap body has no name spaces or the name spaces are not
declared correctly. The correct name spaces are described in the xsd.

<detail>
 XML is not wellformed:

The processing instruction target matching "[xX][mM][lL]"
is not allowed.

</detail>

Possible Explanation:
The whole message must be a correct XML message so that the including IPG API message must not
contains the xml declaration <?xml … ?>.

<detail>

Unexpected characters before XML declaration
</detail>

Possible Explanation:
The XML must start with “<?xml”. Please check, if you send an empty line or another white space
character in front of the xml and remove them.

<detail>
 XML is not a SOAP message:
 Unable to create envelope from given source

because the root element is not named "Envelope"
</detail>

Possible Explanation:
The message seems to be a correct XML message but only soap messages are accepted. This
message must be enclosed by a soap message.

<detail>
 XML is not a valid SOAP message:
 Error with the determination of the type.

Probably the envelope part is not correct.
</detail>

Possible Explanation:
The soap body tag is missing.

<detail>

Source object passed to ''{0}'' has no contents.
</detail>

Possible Explanation:
The soap body is empty. The including IPG API message is missing.

<detail>
 Included XML is not a valid IPG API message:

unsupported top level {namespace}tag "irgendwas" in the soap body. Only one of [
{http://ipg-online.com/ipgapi/schemas/ipgapi}IPGApiActionRequest,

 {http://ipg-online.com/ipgapi/schemas/ipgapi}IPGApiOrderRequest
] allowed.

</detail>

Possible Explanation:
The first tag in the including IPG API message must be one of IPGApiActionRequest or
IPGApiOrderRequest tag and not the tag irgendwas. In this case this tag has no namespace.

<detail>
 Included XML is not a valid IPG API message:

unsupported top level {namespace}tag
"{http://firstdata.de/ipgapi/schemas/ipgapi}IPGApiOrderRequest" in the soap body.
Only one of [
{http://ipg-online.com/ipgapi/schemas/ipgapi}IPGApiActionRequest,
{http://ipg-online.com/ipgapi/schemas/ipgapi}IPGApiOrderRequest
] allowed.

</detail>

Possible Explanation:
The top level tag of the included IPG API message no allowed tag. In this case the name space is
wrong.

<detail>
 cvc-pattern-valid:
 Value '1.234' is not facet-valid with respect to pattern

'([1-9]([0-9]{0,12}))?[0-9](\.[0-9]{1,2})?' for type
'#AnonType_ChargeTotalAmount'

 cvc-type.3.1.3:
 The value '1.234' of element 'ns3:ChargeTotal' is not valid.
</detail>

Possible Explanation:
The value of a tag does not correspond with the declaration in the xsd. The value has three decimal
places but the xsd only allows two.

<detail>

cvc-complex-type.2.4.a:
Invalid content was found starting with element 'ns2:ExpYear'.
One of '{"http://ipg-online.com/ipgapi/schemas/v1":ExpMonth}'
is expected.

</detail>

Possible Explanation:
The occurrences of the tags must be corresponding to the xsd. We recommend to use the tags in the
same sequence as they are declared in the xsd. In this case the tag ExpMonth is expected and not
ExpYear.

Troubleshooting - Processing Exceptions

<detail>

 <ipgapi:IPGApiOrderResponse

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <ipgapi:CommercialServiceProvider />

 <ipgapi:TransactionTime>1233656751183</ipgapi:TransactionTime>

 <ipgapi:ProcessorReferenceNumber />

 <ipgapi:ProcessorResponseMessage />

 <ipgapi:ErrorMessage>

 SGS-C: 000003:

illegal combination of values for the 3DSecure:

(VerificationResponse, PayerAuthenticationResponse,

PayerAuthenticationCode) N Y null

 </ipgapi:ErrorMessage>

 <ipgapi:OrderId />

 <ipgapi:ApprovalCode />

 <ipgapi:AVSResponse />

 <ipgapi:TDate />

 <ipgapi:TransactionResult>FAILED</ipgapi:TransactionResult>

 <ipgapi:TerminalID />

 <ipgapi:ProcessorResponseCode />

<ipgapi:ProcessorApprovalCode />

<ipgapi:ProcessorReceiptNumber />

<ipgapi:ProcessorTraceNumber />

 </ipgapi:IPGApiOrderResponse>

</detail>

Explanation:
The combination of the three values VerificationResponse, PayerAuthenticationResponse and
AuthenticationValue for 3DSecure is wrong. Allowed combinations are

Verification-
Response

Payer-
Authentication

-Response

Authentication
Value IPG 3dsecure

response code Comments

null null null n/a Transaction will be passed to auth
system without any 3dsecure information
No MC ECI, Visa ECI = 7

N null null
7

Cardholder not enrolled
No MC ECI, Visa ECI = 7

N N null
7

Cardholder not enrolled
No MC ECI, Visa ECI = 7

U null null

5

Unable to authenticate (DS not
accessible)
No MC ECI, Visa ECI = 7

Y A null

4

Attempt (ACS cannot tell result of
authentication)
MC ECI = 1, Visa ECI = 6

Y A x

4

Attempt (ACS cannot tell result of
authentication)
MC ECI = 1, Visa ECI = 6

Y U null

6

Unable to authenticate (ACS not
accessible)
No MC ECI, Visa ECI = 7

Y Y null
2

Auth Success (no CAAV / UCAF)
MC ECI = 2, Visa ECI = 5

Y Y x
1

Auth Success
MC ECI = 2, Visa ECI = 5

Y N null

3

Auth Failure (Signature verification
incorrect) - IPG declines the transaction
("N:-5101:3D Secure authentication
failed")
No MC or Visa ECI

Other combinations not listed above will be declined by IPG with a IPG 3dsecure response code of 8
and "N:-5100:Invalid 3D Secure values".

XID (created by MPI before sending Verification request) needs to be set for VISA transactions.

The payer authentication code x means, that the value is not null.

<detail>

 <ipgapi:IPGApiOrderResponse

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <ipgapi:CommercialServiceProvider />

 <ipgapi:TransactionTime>1233659493267</ipgapi:TransactionTime>

 <ipgapi:ProcessorReferenceNumber />

 <ipgapi:ProcessorResponseMessage />

 <ipgapi:ErrorMessage>

SGS-005002:

The merchant is not setup to support the requested

service.

</ipgapi:ErrorMessage>

 <ipgapi:OrderId>

IPGAPI-REQUEST-9c555d62-3850-4726-8589-5a2444c98c5d

</ipgapi:OrderId>

 <ipgapi:ApprovalCode />

 <ipgapi:AVSResponse />

 <ipgapi:TDate />

 <ipgapi:TransactionResult>FAILED</ipgapi:TransactionResult>

 <ipgapi:TerminalID />

 <ipgapi:ProcessorResponseCode />

<ipgapi:ProcessorApprovalCode />

<ipgapi:ProcessorReceiptNumber />

<ipgapi:ProcessorTraceNumber />

 </ipgapi:IPGApiOrderResponse>

</detail>

Explanation:
After a transaction further transactions with the same data blocked are for a configurable time span.
See User Guide Virtual Terminal for details about the fraud settings.

<detail>

 <ipgapi:IPGApiOrderResponse

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <ipgapi:CommercialServiceProvider />

 <ipgapi:TransactionTime>1233656752308</ipgapi:TransactionTime>

 <ipgapi:ProcessorReferenceNumber />

 <ipgapi:ProcessorResponseMessage />

 <ipgapi:ErrorMessage>

SGS-005009:

The currency is not allowed for this terminal.

</ipgapi:ErrorMessage>

 <ipgapi:OrderId>

IPGAPI-REQUEST-a58f6631-eb71-49c8-bbca-23fff53252fc

</ipgapi:OrderId>

 <ipgapi:ApprovalCode />

 <ipgapi:AVSResponse />

 <ipgapi:TDate />

 <ipgapi:TransactionResult>FAILED</ipgapi:TransactionResult>

 <ipgapi:TerminalID />

 <ipgapi:ProcessorResponseCode />

<ipgapi:ProcessorApprovalCode />

<ipgapi:ProcessorReceiptNumber />

<ipgapi:ProcessorTraceNumber />

 </ipgapi:IPGApiOrderResponse>

</detail>

Explanation:
This is an example with US Dollar, which is no allowed currency for this store.

<detail>

 <ipgapi:IPGApiOrderResponse

xmlns:ipgapi="http://ipg-online.com/ipgapi/schemas/ipgapi">

 <ipgapi:CommercialServiceProvider />

 <ipgapi:TransactionTime>1234346305732</ipgapi:TransactionTime>

 <ipgapi:ProcessorReferenceNumber />

 <ipgapi:ProcessorResponseMessage />

 <ipgapi:ErrorMessage>

SGS-032000: Unknown processor error occured.

</ipgapi:ErrorMessage>

 <ipgapi:OrderId>

IPGAPI-REQUEST-b3223ee5-156b-4d22-bc3f-910709d59202

</ipgapi:OrderId>

 <ipgapi:ApprovalCode />

 <ipgapi:AVSResponse />

 <ipgapi:TDate>1234346284</ipgapi:TDate>

 <ipgapi:TransactionResult>DECLINED</ipgapi:TransactionResult>

 <ipgapi:TerminalID />

 <ipgapi:ProcessorResponseCode />

<ipgapi:ProcessorApprovalCode />

<ipgapi:ProcessorReceiptNumber />

<ipgapi:ProcessorTraceNumber />

 </ipgapi:IPGApiOrderResponse>

</detail>

Explanation:
If your transactions are normally executed, one possible explanation is that the number of Terminal
IDs assigned to your store are not sufficient for your transaction volume. Please contact our Sales
team to order further Terminal IDs for load balancing.

Troubleshooting - Login error messages when using cURL

* About to connect() to test.ipg-online.com port 443 (#0)
* Trying 217.73.32.55... connected
* Connected to test.ipg-online.com (217.73.32.55) port 443 (#0)
* unable to set private key file: 'C:\API\config\WS120666668._.1.key' type PEM
* Closing connection #0
curl: (58) unable to set private key file: 'C:\API\config\WS120666668._.1.key' type PEM

Explanation:
Keystore and password do not fit. Check if you used the right keystore and password. Please check if
you used the WS<storeId>._.1.pem file. If you append .cer to the file name you can open the
certificate with a double click. The certificate must be exposed for your store. Please remove the
extension .cer after the check.

* SSL certificate problem, verify that the CA cert is OK. Details:
error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
* Closing connection #0
curl: (60) SSL certificate problem, verify that the CA cert is OK. Details:
error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
More details here: http://curl.haxx.se/docs/sslcerts.html

curl performs SSL certificate verification by default, using a "bundle" of Certificate Authority
(CA) public keys (CA certs). The default bundle is named curl-ca-bundle.crt; you can specify an
alternate file using the --cacert option.
If this HTTPS server uses a certificate signed by a CA represented in the bundle, the certificate
verification probably failed due to a problem with the certificate (it might be expired, or the
name might not match the domain name in the URL).
If you'd like to turn off curl's verification of the certificate, use the -k (or --insecure) option

Explanation:
The truststore certificate is wrong. Please verify the trustore: Open the file tlstrust.pem and check that
one of them matched the root of the server certificate of the Gateway.

<html>

<head>
<title>Apache Tomcat/5.5.20 - Error report</title>
<style>

<!--
H1 {font-family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-
size:22px;}
H2 {font-family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-
size:16px;}
H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-
size:14px;}
BODY {font-family:Tahoma,Arial,sans-serif;color:black;background-color:white;}
B {font-family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;}
P {font-family:Tahoma,Arial,sans-serif;background:white;color:black;font-size:12px;}
A {color : black;}
A.name {color : black;}
HR {color : #525D76;}

-->
</style>

</head>
<body>

<h1>HTTP Status 401 - </h1>

http://curl.haxx.se/docs/sslcerts.html

<HR size="1" noshade="noshade">
<p>type Status report</p><p>message

<u></u></p><p>description
<u>This request requires HTTP authentication ().</u></p>

<HR size="1" noshade="noshade">
<h3>Apache Tomcat/5.5.20</h3>

</body>
</html>

Explanation:
Your certificates are OK and accepted but your password or your user is wrong.#

Troubleshooting - Login error messages when using the Java Client

java.io.IOException: Keystore was tampered with, or password was incorrect

Explanation:
Your keystore password doesn’t fit to the keystore or the truststore password to the truststore. You
can check the password with the keytool which is a component of the JDK. You can find it in the bin
directory of the JDK. For testing the password call
c:\Programme\Java\jdk1.6.0_07\bin\keytool.exe -list -v -keystore <your keystore or truststore> -
storepass <your keystore or truststore password>

javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: No
trusted certificate found

Explanation:
Your truststore is wrong. You can inspect your truststore with keytool, a component of the JDK. Call

c:\Programme\Java\jdk1.6.0_07\bin\keytool.exe -list -v -keystore <your truststore> -storepass
<your truststore password>
and you must find the issuer Equifax
OU=Equifax Secure Certificate Authority, O=Equifax, C=US in the output. Check the MD5 and SHA1
values too.

<html>
 <head>
 <title>Apache Tomcat/5.5.20 - Error report</title>
 <style><!--H1 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:14px;} BODY {font-family:Tahoma,Arial,sans-serif;color:black;background-
color:white;} B {font-family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;} P {font-
family:Tahoma,Arial,sans-serif;background:white;color:black;font-size:12px;}A {color : black;}A.name
{color : black;}HR {color : #525D76;}--></style>
 </head>
 <body>
 <h1>HTTP Status 401 -</h1>
 <HR size="1" noshade="noshade">
 <p>
 type
 Status report
 </p>
 <p>
 message
 <u></u>

 </p>
 <p>
 description
 <u>This request requires HTTP authentication ().</u>
 </p>
 <HR size="1" noshade="noshade">
 <h3>Apache Tomcat/5.5.20</h3>
 </body>
</html>

Explanation: Your user id or password is wrong.

Troubleshooting - .NET integration issues

SSL Handshake problems in .NET - Logging

System.Net has valuable tracing capabilities. Particularly with a complex process like an SSL
handshake, these capabilities become critical to debugging.

Just add a block like on example below to the end of your app.config, run your app again and
take a look at the lines being added to your bin\Debug\trace.log file.

<system.diagnostics>
 <trace autoflush="true"/>
 <sources>
 <source name="System.Net" maxdatasize="1024">
 <listeners>
 <add name="TraceFile"/>
 </listeners>
 </source>
 <source name="System.Net.Sockets" maxdatasize="1024">
 <listeners>
 <add name="TraceFile"/>
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add name="TraceFile" type="System.Diagnostics.TextWriterTraceListener"
 initializeData="trace.log"/>
 </sharedListeners>
 <switches>
 <add name="System.Net" value="Verbose" />
 <add name="System.Net.Sockets" value="Verbose" />
 </switches>
</system.diagnostics>

SSL Handshake problems in .NET- Specific Setting

Setting Expect100Continue to true can help in SSL handshake error situations.

When this property is set to true, 100-Continue behavior is used. Requests that use the PUT and
POST methods will add an Expect header to the request if the ‘Expect100Continue’ property is true
and ContentLength property is greater than zero or the SendChunked property is true. This
mechanism allows you to avoid sending large amounts of data over the network when the server,
based on the request headers, intends to reject the request.
If this property is set to true, the request headers are sent to the server. If the server has not rejected
the request, it sends a 100-Continue response signaling that the data can be transmitted.

HTTP connectivity – Basic authentication

Requesting Headers without User and Password leads to error 401:Unathorized.
The .NET ServicePointManager does not allow setting RequestHeaders with username and
password, so that the first request ends with 401 response, then .NET submits the second part. This
leads to worse performance than sending user/pw right away

HTTP Connectivity - Connection Pool usage

Do not send in parallel more connection pools than connectionLimit allows. The .NET ServicePoint
sets 2 as the default value for the size of the connection pool (attribute connectionLimit). Mind this
needs to be increased if more than two transactions shall be sent to IPG at the same time. The
number of concurrent requests must be lower than the pool size = connection limit.

© 2021 Fiserv, Inc. or its affiliates. Fiserv is a registered trademark of Fiserv, Inc. All trademarks,
service marks and trade names used in this material are the property of their respective owners.

